192
Views
0
CrossRef citations to date
0
Altmetric
Articles

Reactive Black 5 bioremoval potential of newly isolated halotolerant Kluyveromyces marxianus

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 156-171 | Published online: 21 Nov 2022

References

  • Aksu, Z. 2003. Reactive dye bioaccumulation by Saccharomyces cerevisiae. Process Biochemistry 38 (10):1437–1444. doi: 10.1016/S0032-9592(03)00034-7.
  • Aksu, Z. 2005. Application of biosorption for the removal of organic pollutants: A review. Process Biochemistry 40 (3–4):997–1026. doi: 10.1016/j.procbio.2004.04.008.
  • Al-Tohamy, R., J. Sun, M. F. Fareed, E. R. Kenawy, and S. S. Ali. 2020. Ecofriendly biodegradation of Reactive Black 5 by newly isolated Sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification. Scientific Reports 10 (1):16. doi: 10.1038/s41598-020-69304-4.
  • Benkhaya, S., S. M' Rabet, and A. El Harfi. 2020. A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications 115:107891. doi: 10.1016/j.inoche.2020.107891.
  • Bhatia, D., N. R. Sharma, J. Singh, and R. S. Kanwar. 2017. Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology 47 (19):1836–1876. doi: 10.1080/10643389.2017.1393263.
  • Bhattacharya, A., N. Goyal, and A. Gupta. 2017. Degradation of azo dye methyl red by alkaliphilic, halotolerant Nesterenkonia lacusekhoensis EMLA3: Application in alkaline and salt-rich dyeing effluent treatment. Extremophiles 21 (3):479–490. doi: 10.1007/s00792-017-0918-2.
  • Biradar, S. P., N. R. Rane, T. S. Patil, R. V. Khandare, S. P. Govindwar, and P. K. Pawar. 2016. Herbal augmentation enhances malachite green biodegradation efficacy of Saccharomyces cerevisiae. Biologia 71 (5):475–483. doi: 10.1515/biolog-2016-0069.
  • Carliell, C. M., S. J. Barclay, C. Shaw, A. D. Wheatley, and C. A. Buckley. 1998. The effect of salts used in textile dyeing on microbial decolourisation of a reactive azo dye. Environmental Technology (United Kingdom) 19 (11):1133–1137. doi: 10.1080/09593331908616772.
  • Charumathi, D. 2010. Removal of synthetic dye basic Violet 3 by ımmobilised Candida tropicalis grown on sugarcane bagasse extract medium. International Journal of Engineering & Technology 2:4325–4335.
  • Cho, I. H, and K. D. Zoh. 2007. Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design. Dyes and Pigments 75 (3):533–543. doi: 10.1016/j.dyepig.2006.06.041.
  • Ciardo, D. E., G. Schär, E. C. Böttger, M. Altwegg, and P. P. Bosshard. 2006. Internal transcribed spacer sequencing versus biochemical profiling for identification of medically important yeasts. Journal of Clinical Microbiology 44 (1):77–84. doi: 10.1128/JCM.44.1.77-84.2006.
  • Crini, G, and P. M. Badot. 2008. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science 33 (4):399–447. doi: 10.1016/j.progpolymsci.2007.11.001.
  • Daneshvar, N., M. Ayazloo, A. R. Khataee, and M. Pourhassan. 2007. Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresource Technology 98 (6):1176–1182. doi: 10.1016/j.biortech.2006.05.025.
  • Danouche, M., H. EL Arroussi, and N. d El-Ghachtouli. 2021a. Mycoremediation of synthetic dyes by yeast cells: A sustainable biodegradation approach. Environmental Sustainability 4 (1):5–22. doi: 10.1007/s42398-020-00150-w.
  • Danouche, M., M. Ferioun, W. Bahafid, and N. El Ghachtouli. 2021b. Mycoremediation of azo dyes using Cyberlindnera fabianii yeast strain: Application of designs of experiments for decolorization optimization. Water Environment Research 93 (8):1402–1416. doi: 10.1002/wer.1499.
  • Dawood, S, and T. K. Sen. 2014. Review on dye removal from ıts aqueous solution into alternative cost effective and non-conventional adsorbents. Journal of Chemical and Process Engineering 1:104.
  • Deivasigamani, C, and N. Das. 2011. Biodegradation of Basic Violet 3 by Candida krusei isolated from textile wastewater. Biodegradation 22 (6):1169–1180. doi: 10.1007/s10532-011-9472-2.
  • Dhankhar, R, and A. Hooda. 2011. Fungal biosorption – An alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology 32 (5–6):467–491. doi: 10.1080/09593330.2011.572922.
  • Dönmez, G. 2002. Bioaccumulation of the reactive textile dyes by Candida tropicalis growing in molasses medium. Enzyme and Microbial Technology 30 (3):363–366. doi: 10.1016/S0141-0229(01)00511-7.
  • El-Sayed, G. O., M. M. Hazaa, and A. M. El-Komy. 2018. Biotreatment of water polluted with methyl orange dye by using different forms of yeast. Journal of Basic and Environmental Sciences 5:217–221.
  • Encinas-Yocupicio, A. A., E. Razo-Flores, F. Sánchez-Diaz, A. B. dos Santos, J. A. Field, and F. J. Cervantes. 2006. Catalytic effects of different redox mediators on the reductive decolorization of azo dyes. Water Science and Technology 54 (2):165–170. doi: 10.2166/wst.2006.500.
  • Fonseca, G. G., A. K. Gombert, E. Heinzle, and C. Wittmann. 2007. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Research 7 (3):422–435. doi: 10.1111/j.1567-1364.2006.00192.x.
  • Fu, Y, and T. Viraraghavan. 2002. Dye biosorption sites in Aspergillus niger. Bioresource Technology 82 (2):139–145. doi: 10.1016/S0960-8524(01)00172-9.
  • Gahr, F., F. Hermanutz, and W. Oppermann. 1994. Ozonation – An important technique to comply with new German laws for textile wastewater.pdf. Water Science and Technology 30 (3):255–263. doi: 10.2166/wst.1994.0115.
  • Gita, S., H. Ajmal, T. G. Choudhury, and S. Gita. 2017. Impact of textile dyes waste on aquatic environments and its treatment wastewater management view project tribal sub plan view project. Environment and Ecology 35:2349–2353.
  • Glass, N. L, and G. C. Donaldson. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61 (4):1323–1330. doi: 10.1128/aem.61.4.1323-1330.1995.
  • Guo, G., X. Li, F. Tian, T. Liu, F. Yang, K. Ding, C. Liu, J. Chen, and C. Wang. 2020. Azo dye decolorization by a halotolerant consortium under microaerophilic conditions. Chemosphere 244:125510. doi: 10.1016/j.chemosphere.2019.125510.
  • Hashem, A. H., E. Saied, and M. S. Hasanin. 2020. Green and ecofriendly bio-removal of methylene blue dye from aqueous solution using biologically activated banana peel waste. Sustainable Chemistry and Pharmacy 18:100333. doi: 10.1016/j.scp.2020.100333.
  • ICI 2019. Developing sector strategies of professional committees of ıstanbul chamber of ındustry in the process of full membership to the European Union. Istanbul: Textile Manufacturing Industry.
  • Jadhav, S. U., M. U. Jadhav, A. N. Kagalkar, and S. P. Govindwar. 2008. Decolorization of brilliant blue G dye mediated by degradation of the microbial consortium of Galactomyces geotrichum and Bacillus sp. Journal of the Chinese Institute of Chemical Engineers 39 (6):563–570. doi: 10.1016/j.jcice.2008.06.003.
  • Jafari, N., M. R. Soudi, and R. Kasra-Kermanshahi. 2014. Biodecolorization of textile azo dyes by isolated yeast from activated sludge: Issatchenkia orientalis JKS6. Annals of Microbiology 64 (2):475–482. doi: 10.1007/s13213-013-0677-y.
  • Katheresan, V., J. Kansedo, and S. Y. Lau. 2018. Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering.6 (4):4676–4697. doi: 10.1016/j.jece.2018.06.060.
  • Kaushik, P, and A. Malik. 2010. Alkali, thermo and halo tolerant fungal isolate for the removal of textile dyes. Colloids and Surfaces. B, Biointerfaces 81 (1):321–328. doi: 10.1016/j.colsurfb.2010.07.034.
  • Khalid, A., M. Arshad, and D. E. Crowley. 2008. Decolorization of azo dyes by Shewanella sp. under saline conditions. Applied Microbiology and Biotechnology 79 (6):1053–1059. doi: 10.1007/s00253-008-1498-y.
  • Khataee, A. R., F. Vafaei, and M. Jannatkhah. 2013. Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: Kinetic, isotherm and thermodynamic studies. International Biodeterioration & Biodegradation 83:33–40. doi: 10.1016/j.ibiod.2013.04.004.
  • Krishnan, J., A. Arvind Kishore, A. Suresh, B. Madhumeetha, and D. Gnana Prakash. 2017. Effect of pH, inoculum dose and initial dye concentration on the removal of azo dye mixture under aerobic conditions. International Biodeterioration & Biodegradation 119:16–27. doi: 10.1016/j.ibiod.2016.11.024.
  • Lade, H., S. Govindwar, and D. Paul. 2015. Mineralization and detoxification of the carcinogenic azo dye Congo red and real textile effluent by a polyurethane foam immobilized microbial consortium in an upflow column bioreactor. International Journal of Environmental Research and Public Health 12 (6):6894–6918. doi: 10.3390/ijerph120606894.
  • Lane, M. M, and J. P. Morrissey. 2010. Kluyveromyces marxianus: A yeast emerging from its sister’s shadow. Fungal Biology Reviews 24 (1–2):17–26. doi: 10.1016/j.fbr.2010.01.001.
  • Lellis, B., C. Z. Fávaro-Polonio, J. A. Pamphile, and J. C. Polonio. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation 3 (2):275–290. doi: 10.1016/j.biori.2019.09.001.
  • Madhav, S., A. Ahamad, P. Singh, and P. K. Mishra. 2018. A review of textile industry: Wet processing, environmental impacts, and effluent treatment methods. Environmental Quality Management 27 (3):31–41. doi: 10.1002/tqem.21538.
  • Manu, B, and S. Chaudhari. 2003. Decolorization of indigo and azo dyes in semicontinuous reactors with long hydraulic retention time. Process Biochemistry 38 (8):1213–1221. doi: 10.1016/S0032-9592(02)00291-1.
  • Meehan, C., I. M. Banat, G. McMullan, P. Nigam, F. Smyth, and R. Marchant. 2000. Decolorization of Remazol Black-B using a thermotolerant yeast, Kluyveromyces marxianus IMB3. Environment İnternational 26 (1–2):75–79. doi: 10.1016/S0160-4120(00)00084-2.
  • Mirnasab, M. A., H. Hashemi, M. R. Samaei, and A. Azhdarpoor. 2021. Advanced removal of water NOM by pre-ozonation, enhanced coagulation and bio-augmented granular activated carbon. International Journal of Environmental Science and Technology 18 (10):3143–3152. doi: 10.1007/s13762-020-03039-7.
  • Munagapati, V. S., V. Yarramuthi, Y. Kim, K. M. Lee, and D. S. Kim. 2018. Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent. Ecotoxicology and Environmental Safety 148:601–607. doi: 10.1016/j.ecoenv.2017.10.075.
  • Ogugbue, C. J., T. Sawidis, and N. A. Oranusi. 2011. Evaluation of colour removal in synthetic saline wastewater containing azo dyes using an immobilized halotolerant cell system. Ecological Engineering 37 (12):2056–2060. doi: 10.1016/j.ecoleng.2011.09.003.
  • Özer, B, and B. Güven. 2021. Energy efficiency analyses in a Turkish fabric dyeing factory. Energy Sources 43 (7):852–874. doi: 10.1080/15567036.2020.1755392.
  • Pajot, H. F., M. M. Martorell, and L. d Figueroa. 2014. Ecology of dye decolorizing yeasts. In Bioremediation in Latin America, eds. A. Alvarez and M. Polti. Cham/Denmark: Springer.
  • Papegowda, P. K, and A. A. Syed. 2017. Isotherm, kinetic and thermodynamic studies on the removal of methylene blue dye from aqueous solution using saw palmetto spent. International Journal of Environmental Research 11 (1):91–98. doi: 10.1007/s41742-017-0010-x.
  • Parvaresh, V., H. Hashemi, A. Khodabakhshi, and M. Sedehi. 2018. Removal of dye from synthetic textile wastewater using agricultural wastes and determination of adsorption isotherm. Desalınatıon and Water Treatment 111:345–350. doi: 10.5004/dwt.2018.22204.
  • Poulios, I, and I. Tsachpinis. 1999. Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides. Journal of Chemical Technology & Biotechnology 74 (4):349–357. doi: 10.1002/(SICI)1097-4660(199904)74:4 < 349::AID-JCTB5 > 3.0.CO;2-7.
  • Prabhakar, Y., A. Gupta, and A. Kaushik. 2019. Enhanced decolorization of reactive violet dye 1 by halo-alkaliphilic Nesterenkonia strain: Process optimization, short acclimatization and reusability analysis in batch cycles. Process Safety and Environment Protection 131:116–126. doi: 10.1016/j.psep.2019.09.004.
  • Rath, K. M, and J. Rousk. 2015. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biology and Biochemistry 81:108–123. doi: 10.1016/j.soilbio.2014.11.001.
  • Renganathan, S., W. R. Thilagaraj, L. R. Miranda, P. Gautam, and M. Velan. 2006. Accumulation of Acid Orange 7, Acid Red 18 and Reactive Black 5 by growing Schizophyllum commune. Bioresource Technology 97 (16):2189–2193. doi: 10.1016/j.biortech.2005.09.018.
  • Rodríguez-Couto, S., J. F. Osma, and J. L. Toca-Herrera. 2009. Removal of synthetic dyes by an eco-friendly strategy. Engineering in Life Sciences 9 (2):116–123. doi: 10.1002/elsc.200800088.
  • Rousk, J., P. C. Brookes, and E. Bååth. 2009. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology 75 (6):1589–1596. doi: 10.1128/AEM.02775-08.
  • Ruscasso, F., B. Bezus, G. Garmendia, S. Vero, G. Curutchet, I. Cavello, and S. Cavalitto. 2021. Debaryomyces hansenii F39A as biosorbent for textile dye removal. Revista Argentina de Microbiologia 53 (3), 257–265. doi: 10.1016/j.ram.2020.10.004.
  • Saravanan, P., S. Kumaran, S. Bharathi, P. Sivakumar, P. Sivakumar, S. R. Pugazhvendan, W. Aruni, and S. Renganathan. 2021. Bioremediation of synthetic textile dyes using live yeast Pichia pastoris. Environmental Technology & Innovation 22:101442. doi: 10.1016/j.eti.2021.101442.
  • Saroyan, H., D. Ntagiou, K. Rekos, and E. Deliyanni. 2019. Reactive Black 5 degradation on manganese oxides supported on sodium hydroxide modified graphene oxide. Applied Sciences 9 (10):2167. doi: 10.3390/app9102167.
  • Sarvestani, M. R. J, and Z. Doroudi. 2020. Removal of reactive black 5 from waste waters by adsorption: A comprehensive review. Journal of Water and Environmental Nanotechnology 5:180–190. doi: 10.22090/jwent.2020.02.008.
  • Skanda, S., P. S. J. Bharadwaj, S. Kar, V. Sai Muthukumar, and B. S. Vijayakumar. 2021. Bioremoval capacity of recalcitrant azo dye Congo red by soil fungus Aspergillus arcoverdensis SSSIHL-01. Bioremediation Journal 1–12. doi: 10.1080/10889868.2021.1984198.
  • Solís, M., A. Solís, H. I. Pérez, N. Manjarrez, and M. Flores. 2012. Microbial decolouration of azo dyes: A review. Process Biochemistry. 47 (12):1723–1748. doi: 10.1016/j.procbio.2012.08.014.
  • Song, L., Y. Shao, S. Ning, and L. Tan. 2017. Performance of a newly isolated salt-tolerant yeast strain Pichia occidentalis G1 for degrading and detoxifying azo dyes. Bioresource Technology 233:21–29. doi: 10.1016/j.biortech.2017.02.065.
  • Sowmya, M., and M. Hatha. 2017. Handbook of metal-microbe interactions and bioremediation: Cadmium and lead tolerance mechanisms in bacteria and the role of halotolerant and moderately halophilic bacteria in their remediation, 575–584. Boca Raton, FL: CRC Press.
  • Tan, L., M. He, L. Song, X. Fu, and S. Shi. 2016. Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1. Bioresource Technology 203:287–294. doi: 10.1016/j.biortech.2015.12.058.
  • Tan, L., Y. Shao, G. Mu, S. Ning, and S. Shi. 2020. Enhanced azo dye biodegradation performance and halotolerance of Candida tropicalis SYF-1 by static magnetic field (SMF). Bioresource Technology 295:122283. doi: 10.1016/j.biortech.2019.122283.
  • Taştan, B. E., S. E. Karatay, and G. Dönmez. 2012. Bioremoval of textile dyes with different chemical structures by Aspergillus versicolor in molasses medium. Water Science and Technology 66 (10):2177–2184. doi: 10.2166/wst.2012.441.
  • Tezcanli-Guyer, G, and N. H. Ince. 2003. Degradation and toxicity reduction of textile dyestuff by ultrasound. Ultrasonics Sonochemistry 10 (4–5):235–240. doi: 10.1016/S1350-4177(03)00089-0.
  • Tkaczyk, A., K. Mitrowska, and A. Posyniak. 2020. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. The Science of the Total Environment 717:137222. doi: 10.1016/j.scitotenv.2020.137222.
  • Wang, X., Y. Wang, S. Ning, S. Shi, and L. Tan. 2020. Improving azo dye decolorization performance and halotolerance of Pichia occidentalis A2 by static magnetic field and possible mechanisms through comparative transcriptome analysis. Frontiers in Microbiology 11:712. doi: 10.3389/fmicb.2020.00712.
  • Yang, Q., A. Yediler, M. Yang, and A. Kettrup. 2005. Decolorization of an azo dye, Reactive Black 5 and MnP production by yeast isolate: Debaryomyces polymorphus. Biochemical Engineering Journal 24 (3):249–253. doi: 10.1016/j.bej.2004.12.004.
  • Yang, R. H., J. H. Su, J. J. Shang, Y. Y. Wu, Y. Li, D. P. Bao, and Y. J. Yao. 2018. Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. Plos One 13 (10):e0206428. doi: 10.1371/journal.pone.0206428.
  • Yaseen, D. A, and M. Scholz. 2019. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology 16 (2):1193–1226. doi: 10.1007/s13762-018-2130-z.
  • Youn, H. Y., D. H. Kim, H. J. Kim, Y. S. Jang, K. Y. Song, D. Bae, H. Kim, and K. H. Seo. 2022. A Combined ın vitro and ın vivo assessment of the safety of the yeast strains Kluyveromyces marxianus A4 and A5 ısolated from Korean Kefir. Probiotics and Antimicrobial Proteins 1–10. doi: 10.1007/s12602-021-09872-7.
  • Zhou, Y., J. Lu, Y. Zhou, and Y. Liu. 2019. Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution (Barking, Essex: 1987) 252 (Pt A):352–365. doi: 10.1016/j.envpol.2019.05.072.
  • Zhou, Z., R. Zhang, S. Hu, Y. Ma, K. Du, M. Sun, H. Zhang, X. Jiang, H. Tu, and P. Chen. 2022. Internal transcribed spacer sequencing and metatranscriptomics analysis reveal the fungal community composition, diversity related environment variables and roles during serofluid dish fermentation. Lebensmittel-Wissenschaft + Technologie 153:112450. doi: 10.1016/j.lwt.2021.112450.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.