112
Views
0
CrossRef citations to date
0
Altmetric
Notes

Phytoremediation assessment of Euphorbia granulata from 10 remote areas with different local climates and heavy metals composition

Pages 232-244 | Published online: 25 Jan 2023

References

  • Al-Busaidi, A., P. Cookson, and T. Yamamoto. 2005. Methods of pH determination in calcareous soils: Use of electrolytes and suspension effect. Australian Journal of Soil Research 43 (4):541–5. doi: 10.1071/SR04102.
  • Al-Qahtani, K. 2012. Assessment of heavy metals accumulation in native plant species from soils contaminated in Riyadh city, Saudi Arabia. Life Sciences Journal 9:384–92. doi: 10.3390/su14105993.
  • Altaf, R., S. Altaf, M. Hussain, R. U. Shah, R. Ullah, M. I. Ullah, A. Rauf, M. J. Ansari, S. A. Alharbi, S. Alfarraj, et al. 2021. Heavy metal accumulation by roadside vegetation and implications for pollution control. PLoS One 16 (5):e0249147. doi: 10.1371/journal.pone.0249147.
  • Amin, H., B. A. Arain, T. M. Jahangir, M. S. Abbasi, and F. Amin. 2018. Accumulation and distribution of lead (Pb) in plant tissues of guar (Cyamopsis tetragonoloba L.) and sesame (Sesamum indicum L.): Profitable phytoremediation with biofuel crops. GeoloGy, EcoloGy, and Landscapes 2 (1):51–60. doi: 10.1080/24749508.2018.1452464.
  • Annan, K., R. A. Dickson, I. K. Amponsah, and I. K. Nooni. 2013. The heavy metal contents of some selected medicinal plants sampled from different geographical locations. Pharmacognosy Research 5 (2):103–8. doi: 10.4103/0974-8490.110539.
  • Antoniadis, V., S. M. Shaheen, H. Stark, R. Wennrich, E. Levizou, I. Merbach, and J. Rinklebe. 2021. Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil. Environment International 146:106233. doi: 10.1016/j.envint.2020.106233.
  • Arthur, E. L., P. J. Rice, P. J. Rice, T. A. Anderson, S. M. Baladi, K. L. D. Henderson, and J. R. Coats. 2005. Phytoremediation-an overview. Critical Reviews in Plant Sciences 24 (2):109–22. doi: 10.1080/07352680590952496.
  • Ashworth, J., D. Keyes, R. Kirk, and R. Lessard. 2001. Standard procedure in the hydrometer method for particle size analysis. Communications Soil Science and Plant Analysis 32 (5–6):633–42. doi: 10.1081/CSS-100103897.
  • Azab, E., and A. K. Hegazy. 2020. Monitoring the efficiency of Rhazya stricta L. plants in phytoremediation of heavy metal-contaminated soil. Plants 9 (9):1057–15. doi: 10.3390/plants9091057.
  • Beretta, A. N., A. V. Silbermann, L. Paladino, D. Torres, D. Bassahun, R. Musselli, and A. Garcia-Lamohte. 2014. Soil texture analyses using a hydrometer: Modification of the Bouyoucos method. Ciencia E Investigacion Agraria 41:263–71. doi: 10.4067/S0718-16202014000200013.
  • Blasco, J., P. Chapman, O. Campana, and M. Hampel. 2016. Marine ecotoxicology. 1st ed. Cambridge, MA: Academic Press.
  • Busse, M., C. P. Giardina, D. M. Morris, and D. S. Page-Dumroese. 2019. Global change and forest soils, 3–510. Amsterdam, Netherland: Elsevier Ltd.
  • Chauhan, P., and J. Mathur. 2020. Phytoremediation efficiency of Helianthus annuus L. for reclamation of heavy metals-contaminated industrial soil. Environmental science and Pollution Research International 27 (24):29954–66. doi: 10.1007/s11356-020-09233-x.
  • Emashogwe, O. A., I. A. Kesiye, G. Jackson, and U. Isaac. 2020. Assessment of the phytoremediation capabilities of bracken fern (Pteridium aquilinum) for the remediation of heavy metals (Pb, Ni and Cd) contaminated water. African Journal of Environmental Science and Technology 14:336–46. doi: 10.5897/AJEST2020.2880.
  • Gebeyehu, H. R., and L. D. Bayissa. 2020. Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PLoS One 15 (1):e0227883. doi: 10.1371/journal.pone.0227883.
  • Gentili, R., R. Ambrosini, C. Montagnani, S. Caronni, and S. Citterio. 2018. Effect of soil pH on the growth, reproductive investment and pollen allergenicity of Ambrosia artemisiifolia L. Frontiers in Plant Science 9:1–12. doi: 10.3389/fpls.2018.01335.
  • Gomah, L. G., R. S. Ngumbu, and R. B. Voegborlo. 2019. Dietary exposure to heavy metal contaminated rice and health risk to the population of Monrovia. Journal of Environmental and Public Health 3:474–82. doi: 10.26502/jesph.96120077.
  • Herlina, L., B. Widianarko, and H. R. Sunoko. 2020. Phytoremediation potential of Cordyline fruticosa for lead contaminated soil. Jurnal Pendidikan IPA Indonesia 9 (1):42–9. doi: 10.15294/jpii.v9i1.23422.
  • Hu, Y., D. Wang, L. Wei, X. Zhang, and B. Song. 2014. Bioaccumulation of heavy metals in plant leaves from Yan’an city of the Loess Plateau, China. Ecotoxicology and Environmental Safety 110:82–8. doi: 10.1016/j.ecoenv.2014.08.021.
  • Khair, K. U., M. Farid, U. Ashraf, M. Zubair, M. Rizwan, S. Farid, H. K. Ishaq, U. Iftikhar, and S. Ali. 2020. Citric acid enhanced phytoextraction of nickel (Ni) and alleviate Mentha piperita (L.) from Ni-induced physiological and biochemical damages. Environmental Science and Pollution Research International 27 (21):27010–22. doi: 10.1007/s11356-020-08978-9.
  • Khan, A., S. Khan, M. A. Khan, Z. Qamar, and M. Waqas. 2015. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environmental Science and Pollution Research 22 (18):13772–99. doi: 10.1007/s11356-015-4881-0.
  • Kim, T., M. Cho, Y. Lee, J. Kim, J. Hwang, H. Lee, S. Kim, J. Choi, and G. Kang. 2020. Methylmercury determination in fish by direct mercury analyzer. Journal of AOAC International 103 (1):244–9. doi: 10.5740/jaoacint.18-0254.
  • Mosa, K. A., I. Saadoun, K. Kumar, M. Helmy, and O. P. Dhankher. 2016. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Frontiers of Plant Science 7:303. doi: 10.3389/fpls.2016.00303.
  • Pandey, V. C., and D. P. Singh. 2016. Phytoremediation potential of perennial grasses. 1st ed. Amsterdam, Netherlands: Elsevier.
  • Pandey, V. C., and K. Bauddh. 2018. Phytomanagement of polluted sites.1st ed. Amsterdam, Netherlands: Elsevier.
  • Parveen, R., A. M. Abbasi, N. Shaheen, and M. H. Shah. 2020. Accumulation of selected metals in the fruits of medicinal plants grown in urban environment of Islamabad, Pakistan. Arabian Journal of Chemistry 13 (1):308–17. doi: 10.1016/j.arabjc.2017.04.010.
  • Prasad, M. N. V., M. Vithanage, and A. Kapley. 2019. Pharmaceuticals and personal care products: Waste management and treatment technology. 1st ed. Oxford: Butterworth-Heinemann.
  • Roper, W. R., W. P. Robarge, D. L. Osmond, and J. L. Heitman. 2019. Comparing four methods of measuring soil organic matter in North Carolina soils. Soil Science Society of America Journal 83 (2):466–74. doi: 10.2136/sssaj2018.03.0105.
  • Satoshi, M., N. Soichiro, and H. Kouki. 2020. The latitudinal and altitudinal variations in the biochemical mechanisms of temperature dependence of photosynthesis within Fallopia japonica. Environmental and Experimental Botany 181:104248. doi: 10.1016/j.envexpbot.2020.104248.
  • Sharma, S., A. K. Nagpal, and I. Kaur. 2018. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar Wetland, Punjab, India and its environs. Food Chemistry 255:15–22. doi: 10.1016/j.foodchem.2018.02.037.
  • Tangahu, B. V., S. R. S. Abdullah, H. Basri, M. Idris, N. Anuar, and M. Mukhlisin. 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering 2011:1–31. doi: 10.1155/2011/939161.
  • Usman, K., M. A. Al-Ghouti, and M. H. Abu-Dieyeh. 2019. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Scientific Reports 9 (1):5658. doi: 10.1038/s41598-019-42029-9.
  • Yap, D. W., J. Adezrian, J. Khairiah, B. S. Ismail, and R. Ahmad-Mahir. 2009. The uptake of heavy metals by paddy plants (Oryza sativa) in Kota Marudu, Sabah, Malaysia. American-Eurasian Journal of Agricultural & Environmental Sciences 6:16–9. http://www.idosi.org/aejaes/jaes6(1)/3.pdf.
  • Yazdanbakhsh, A., S. N. Alavi, S. A. Valadabadi, F. Karimi, and Z. Karimi. 2020. Heavy metals uptake of salty soils by ornamental sunflower, using cow manure and biosolids: A case study in Alborz city, Iran. Air, Soil and Water Research 13:117862211989846–13. doi: 10.1177/1178622119898460.
  • Zhang, H., L. Zhang, J. Li, M. Chen, and R. An. 2020. Comparative study on the bioaccumulation of lead, cadmium and nickel and their toxic effects on the growth and enzyme defence strategies of a heavy metal accumulator, Hydrilla verticillata (L.f.) Royle. Environmental Science and Pollution Research International 27 (9):9853–65. doi: 10.1007/s11356-019-06968-0.
  • Zhuang, P., M. B. McBride, H. Xia, N. Li, and Z. Li. 2009. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. The Science of the Total Environment 407 (5):1551–61.
  • Zinn, Y. L., J. Amaral-de-Faria, M. Alessandra-de-Araujo, and A. L. A. Skorupa. 2020. Soil parent material is the main control on heavy metal concentrations in tropical highlands of Brazil. Catena 185:104319. doi: 10.1016/j.catena.2019.104319.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.