103
Views
0
CrossRef citations to date
0
Altmetric
Articles

Potentials of surface modified biochar for removal of Cr from tannery effluent and its regeneration to ensure circular economy

, , , , &
Pages 172-190 | Published online: 19 Oct 2023

References

  • Abbas, S. H., I. M. Ismail, T. M. Mostafa, and A. H. Sulaymon. 2014. Biosorption of heavy metals: A review. Journal of Chemical Science and Technology 3 (4):74–102. doi: 10.5772/intechopen.72099.
  • Ahmad, A. A., and B. H. Hameed. 2010. Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. Journal of Hazardous Materials 175 (1–3):298–303. doi: 10.1016/j.jhazmat.2009.10.003.
  • Ahmed, M. B., J. L. Zhou, H. H. Ngo, W. Guo, and M. Chen. 2016. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource Technology 214:836–51. doi: 10.1016/j.biortech.2016.05.057.
  • Aksu, Z., and F. Gonen. 2004. Biosorption of Phenol by Immobilized Activated Sludge on a Continuous Packed Bed: Prediction of Breakthrough Curves. Process Biochemistry 39 (5):599–613. doi: 10.1016/S0032-9592(03)00132-8.
  • Ali, F., M. Kamal, and M. S. Islam. 2020. Comparative study on physical properties of different types of leather in Bangladesh. International Journal of Engineering Research and Applications 10 (2):55–63. doi: 10.9790/9622-1002035563.
  • Alkenani, A., and T. A. Saleh. 2022. Synthesis of amine-modified graphene integrated membrane as protocols for simultaneous rejection of hydrocarbons pollutants, metal ions, and salts from water. Journal of Molecular Liquids 367:120291. doi: 10.1016/j.molliq.2022.120291.
  • Alluri, H. K., S. R. Ronda, V. S. Settalluri, J. S. Bondili, V. Suryanarayana, and P. Venkateshwar. 2007. Biosorption: An eco-friendly alternative for heavy metal removal. African Journal of Biotechnology 6 (25):2924–31. doi: 10.5897/AJB2007.000-2461.
  • Balarak, D., Y. Mahdavi, F. Gharibi, and S. Sadeghi. 2014. Removal of hexavalent chromium from aqueous solution using canola biomass: Isotherms and kinetics studies. Journal of Advances in Environmental Health Research 2 (4):234–41. doi: 10.22102/jaehr.2014.40174.
  • Baral, S. S., N. Das, T. S. Ramulu, S. K. Sahoo, S. N. Das, and G. R. Chaudhury. 2009. Removal of Cr(VI) by thermally activated weed Salviniacucullata in a fixed-bed column. Journal of Hazardous Materials 161 (2–3):1427–35. doi: 10.1016/j.jhazmat.2008.04.127.
  • Batista, E., J. Shultz, T. Matos, M. R. Fornari, T. M. Ferreira, B. Szpoganicz, R. A. de Freitas, and A. S. Mangrich. 2018. Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Scientific Reports 8 (1):10677–84. doi: 10.1038/s41598-018-28794-z.
  • Bhuvaneshwari, S., V. Sivasubramanian, K. Sankar, M. Aswathi, and B. Harish. 2015. Application of response surface methodology for adsorption of Cr (VI) from wastewater streams by chitosan. Indian Journal Chemical Technology 22:283–90. http://nopr.niscpr.res.in/handle/123456789/33669.
  • Bin-Dahman, O. A., and T. A. Saleh. 2022. Synthesis of polyamide grafted on biosupport as polymeric adsorbents for the removal of dye and metal ions. Biomass Conversion and Biorefinery 1–14. doi: 10.1007/s13399-022-02382-8.
  • Chatzimichailidou, S., M. Xanthopoulou, A. K. Tolkou, and I. A. Katsoyiannis. 2023. Biochar derived from rice by-products for arsenic and chromium removal by adsorption: A review. Journal of Composites Science 7 (2):59. doi: 10.3390/jcs7020059.
  • Chen, T., Z. Zhou, S. Xu, H. Wang, and W. Lu. 2015. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge. Bioresource Technology 190:388–94. doi: 10.1016/j.biortech.2015.04.115.
  • Choudhary, B., D. Paul, A. Singh, and T. Gupta. 2017. Removal of hexavalent chromium upon interaction with biochar under acidic conditions: Mechanistic insights and application. Environmental Science and Pollution Research International 24 (20):16786–97. doi: 10.1007/s11356-017-9322-9.
  • Chowdhury, M., M. G. Mostafa, T. K. Biswas, A. Mandal, and A. K. Saha. 2015. Characterization of the Effluents from Leather Processing Industries. Environmental Processes 2 (1):173–87. doi: 10.1007/s40710-015-0065-7.
  • Chowdhury, Z. Z., S. M. Zain, R. A. Khan, R. F. Rafique, and K. Khalid. 2012. Batch and fixed bed adsorption studies of lead (II) cations from aqueous solutions onto granular activated carbon derived from Mangostana garcinia shell. BioResources 7 (3):2895–915. doi: 10.15376/biores.7.3.2895-2915.
  • Dabai, A. I., and K. Mohammed. 2020. Chromium removal from tannery wastewater: A review. Platform: A Journal of Science and Technology 3 (1):63–73. https://myjms.mohe.gov.my/index.php/pjst/article/view/8483/4838.
  • Demirbas, A. 2004. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis 72 (2):243–8. doi: 10.1016/j.jaap.2004.07.003.
  • Di Iaconi, C., A. Lopez, R. Ramadori, A. C. Di Pinto, and R. Passino. 2002. Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter (SBBR). Water Research 36 (9):2205–14. doi: 10.1016/s0043-1354(01)00445-6.
  • Divya, K., and R. Vidya. 2016. A review on tannery pollution in Vellore district, Tamil Nadu, India. Research Journal of Pharmaceutical, Biological and Chemical Sciences 7 (3):1380–4. https://www.rjpbcs.com/pdf/20167
  • Egbosiuba, T. C., A. S. Abdulkareem, J. O. Tijani, J. I. Ani, V. Krikstolaityte, M. Srinivasan, A. Veksha, and G. Lisak. 2021. Taguchi optimization design of diameter-controlled synthesis of multi walled carbon nanotubes for the adsorption of Pb(II) and Ni(II) from chemical industry wastewater. Chemosphere 266:128937–43. doi: 10.1016/j.chemosphere.2020.128937.
  • Fu, F., and Q. Wang. 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management 92 (3):407–18. doi: 10.1016/j.jenvman.2010.11.011.
  • Ghosh, D. 2010. Water hyacinth befriending the Noxious weed. Scientific Reports 47:46–8. https://nopr.niscpr.res.in/bitstream/123456789/10702/1/SR%2047%2812%29%2046-48.pdf.
  • Han, Y., X. Cao, X. Ouyang, S. P. Sohi, and J. Chen. 2016. Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere 145:336–41. doi: 10.1016/j.chemosphere.2015.11.050.
  • Jackson, M. 1967. Soil chemical analysis. London: Prentice Hall International Inc.
  • Jackson, M. 1973. Soil chemical analysis, Vol. 498, 151–4. New Delhi, India: Pentice Hall of India Pvt. Ltd.
  • Kokab, T., H. S. Ashraf, M. B. Shakoor, A. Jilani, S. R. Ahmad, M. Majid, S. Ali, N. Farid, R. A. Alghamdi, D. A. H. Al-Quwaie, et al. 2021. Effective removal of CR(VI) from wastewater using biochar derived from walnut shell. International Journal of Environmental Research and Public Health 18 (18):9670. doi: 10.3390/ijerph18189670.
  • Kratochvil, D., P. Pimentel, and B. Volesky. 1998. Removal of trivalent and hexavalent chromium by seaweed biosorbent. Environmental Science & Technology 32 (18):2693–8. doi: 10.1021/es971073u.
  • Kurniawan, T. A., G. Y. Chan, W. H. Lo, and S. Babel. 2006. Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal 118 (1–2):83–98. doi: 10.1016/j.cej.2006.01.015.
  • Lata, S., and S. R. Samadder. 2014. Removal of heavy metals using rice husk: A review. International Journal of Environmental Research and Development 4 (2):165–70. https://www.ripublication.com/ijerd_spl/ijerdv4n2spl_10.pdf.
  • Leung, W. C., M. F. Wong, H. Chua, W. Lo, P. H. F. Yu, and C. K. Leung. 2000. Removal and recovery of heavy metals by bacteria isolated from activated sludge treating industrial effluents and municipal wastewater. Water Science and Technology 41 (12):233–40. doi: 10.2166/wst.2000.0277.
  • Lezcano, J. M., F. Gonzalez, A. Ballester, M. L. Blazquez, J. A. Munoz, and C. Garcia-Balboa. 2011. Sorption and desorption of Cd, Cu and Pb using biomass from aneutrophized habitat in monometallic and bimetallic systems. Journal of Environmental Management 92 (10):2666–74. doi: 10.1016/j.jenvman.2011.06.004.
  • Liang, M., Y. Ding, Q. Zhang, D. Wang, H. Li, and L. Lu. 2020. Removal of aqueous Cr (VI) by magnetic biochar derived from bagasse. Scientific Reports 10 (1):21473. doi: 10.1038/s41598-020-78142-3.
  • Louhab, K., N. Sahmoune, J. Addad, and S. Barr. 2008. Quality improvement of recycled chromium in the tanning operation by fermentation waste. Paper presented at the the 12th International Water Technology Conference, IWTC12; Alexandria; 27–30 March, 1–13.
  • Lucaci, A. R., D. Bulgariu, I. Ahmad, G. Lisă, A. M. Mocanu, and L. Bulgariu. 2019. Potential use of biochar from various waste biomass as biosorbent in Co (II) removal processes. Water 11 (8):1565. doi: 10.3390/w11081565.
  • Malik, A. 2007. Environmental challenge vis a vis opportunity: The case of water hyacinth. Environment International 33 (1):122–38. doi: 10.1016/j.envint.2006.08.004.
  • Mandal, T., D. Dasgupta, S. Mandal, and S. Datta. 2010. Treatment of leather industry wastewater by aerobic biological and Fenton oxidation process. Journal of Hazardous Materials 180 (1–3):204–11. doi: 10.1016/j.jhazmat.2010.04.014.
  • Mohanta, S., M. K. Sahu, P. C. Mishra, and A. K. Giri. 2021. Removal of Cr (VI) from aqueous solution by activated charcoal derived from Sapindus trifoliate L fruit biomass using continuous fixed bed column studies. Water Science and Technology: A Journal of the International Association on Water Pollution Research 84 (1):55–65. doi: 10.2166/wst.2021.217.
  • Murad, H. A., M. Ahmad, J. Bundschuh, Y. Hashimoto, M. Zhang, B. Sarkar, and Y. S. Ok. 2022. A Remediation approach to chromium-contaminated water and soil using engineered biochar derived from peanut shell. Environmental Research 204 (Pt B):112125. doi: 10.1016/j.envres.2021.112125.
  • Murali, S., and M. Rajan. 2012. Bioremediation of chloride from tannery effluent (Senkulam Lake in Dindigul Batlagundu highway) with Halobacterium species and Bacteria isolated from Tannery Effluent. International Journal Environmental Biology 2 (1):23–30.
  • Muthusamy, S., and S. Venkatachalam. 2015. Competitive biosorption of Cr (VI) and Zn (II) ions in single-and binary-metal systems onto a biodiesel waste residue using batch and fixed-bed column studies. RSC Advances 5 (57):45817–26. doi: 10.1039/C5RA05962C.
  • Naeem, M. A., M. Imran, M. Amjad, G. Abbas, M. Tahir, B. Murtaza, A. Zakir, M. Shahid, L. Bulgariu, and I. Ahmad. 2019. Batch and column scale removal of cadmium from water using raw and acid activated wheat straw biochar. Water 11 (7):1438. doi: 10.3390/w11071438.
  • Noh, J. S., and J. A. Schwarz. 1989. Estimation of the point of zero charge of simple oxides by mass titration. Journal of Colloid and Interface Science 130 (1):157–64. doi: 10.1016/0021-9797(89)90086-6.
  • Oumabady, S., S. Paul Sebastian, P. Kalaiselvi, V. Davamani, P. T. Ramesh, T. Palanisami, and R. Sangeetha Piriya. 2022. Kinetic and isotherm insights of Diclofenac removal by sludge derived hydrochar. Scientific Reports 12 (1):2184. doi: 10.1038/s41598-022-05943-z.
  • Oumabady, S., P. S. Selvaraj, S. P. B. Kamaludeen, P. Ettiyagounder, K. Suganya, and S. P. R. 2021. Application of sludge derived KOH activated hydrochar in the adsorptive removal of orthophosphate. RSC Advances 11 (12):6535–43. doi: 10.1039/D0RA10943F.
  • Oumabady, S., P. S. S, S. P. B. Kamaludeen, M. Ramasamy, P. Kalaiselvi, and E. Parameswari. 2020. Preparation and characterization of optimized hydrochar from paper board mill sludge. Scientific Reports 10 (1):773–886. doi: 10.1038/s41598-019-57163-7.
  • Pan, J. J., J. Jiang, and R. K. Xu. 2014. Removal of Cr(VI) from aqueous solutions by Na2SO3/FeSO4 combined with peanut straw biochar. Chemosphere 101:71–6. doi: 10.1016/j.chemosphere.2013.12.026.
  • Panwar, N. L., and A. Pawar. 2022. Influence of activation conditions on the physicochemical properties of activated biochar: A review. Biomass Conversion and Biorefinery 12 (3):925–47. https://www.springerprofessional.de/en/influence-of-activation-conditions-on-the-physicochemical-proper/18183622. doi: 10.1007/s13399-020-00870-3.
  • Parameswari, E., R. Kalaiarasi, V. Davamani, P. Kalaiselvi, S. Paul Sebastian, and K. Suganya. 2021a. Potential of activated biochar for sequestration of chromium (VI) from aqueous solution: Parameters optimised by RSM, Isotherm and kinetics study, International. International Journal of Environmental Analytical Chemistry 1–19. doi: 10.1080/03067319.2021.1962319.
  • Parameswari, E., R. P. Premalatha, V. Davamani, P. Kalaiselvi, S. P. Sebastian, and K. Suganya. 2021b. Biosorption of chromium ions through modified Eichhornia crassipes biomass form the aqueous medium. Journal of Environmental Biology 42 (1):63–73. doi: 10.22438/jeb/42/1/MRN-1397.
  • Premalatha, R. P., E. Parameswari, V. Davamani, P. Malarvizhi, and S. Avudainayagam. 2019. Biosorption of chromium (III) from aqueous solution by water hyacinth biomass. Madras Agricultural Journal 106 (1–3):1–8. 2019.000215 doi: 10.29321/MAJ.
  • Premalatha, R. P., E. Parameswari, P. Malarvizhi, S. Avudainayagam, and V. Davamani. 2018. Sequestration of hexavalent chromium from aqueous medium using biochar prepared from water hyacinth biomass. Chemical Science International Journal 22 (3):1–15. doi: 10.9734/CSJI/2018/40547.
  • Qian, L., W. Zhang, J. Yan, L. Han, W. Gao, R. Liu, and M. Chen. 2016. Effective removal of heavy 5metal by biochar colloids under different pyrolysis temperatures. Bioresource Technology 206:217–24. doi: 10.1016/j.biortech.2016.01.065.
  • Rani, L., J. Kaushal, and A. Lal Srivastav. 2022. Biochar as sustainable adsorbents for chromium ion removal from aqueous environment: A review. Biomass Conversion and Biorefinery 1–14. doi: 10.1007/s13399-022-02784-8.
  • Saleh, T. A. 2015. Isotherm, kinetic, and thermodynamic studies on Hg (II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. Environmental Science and Pollution Research International 22 (21):16721–31. doi: 10.1007/s11356-015-4866-z.
  • Saleh, T. A. 2018. Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon. Journal of Cleaner Production 172:2123–32. doi: 10.1016/j.jclepro.2017.11.208.
  • Saleh, T. A. 2021a. Carbon nanotube-incorporated alumina as a support for MoNi catalysts for the efficient hydrodesulfurization of thiophenes. Chemical Engineering Journal 404:126987. doi: 10.1016/j.cej.2020.126987.
  • Saleh, T. A. 2021b. Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies. Environmental Technology & Innovation 24:101821. doi: 10.1016/j.eti.2021.101821.
  • Saleh, T. A., M. Mustaqeem, and M. Khaled. 2022. Water treatment technologies in removing heavy metal ions from wastewater: A review. Environmental Nanotechnology, Monitoring & Management 17:100617. doi: 10.1016/j.enmm.2021.100617.
  • Selvaraj, P. S., P. Kalaiselvi, K. Suganya, R. Kavitha, M. Selvamurugan, R. Poornima, R. Bush, S. G. T. Vincent, and T. Palanisami. 2022. Novel resources recovery from anaerobic digestates: Current trends and future perspectives. Critical Reviews in Environmental Science and Technology 52 (11):1915–99. doi: 10.1080/10643389.2020.1864957.
  • Singha, B., and S. K. Das. 2011. Biosorption of Cr(VI) ions from aqueous solutions: Kinetics, equilibrium, thermodynamics and desorption studies. Colloids and Surfaces B Biointerfaces 84 (1):221–32. doi: 10.1016/j.colsurfb.2011.01.004.
  • Sinha, R., R. Kumar, P. Sharma, N. Kant, J. Shang, and T. M. Aminabhavi. 2022. Removal of hexavalent chromium via biochar-based adsorbents: State-of-the-art, challenges, and future perspectives. Journal of Environmental Management 317:115356. doi: 10.1016/j.jenvman.2022.115356.
  • Sivaprakash, B., N. Rajamohan, and A. M. Sadhik. 2010. Batch and column sorption of heavy metal from aqueous solution using a marine alga Sargassum tenerrimum. International Journal of ChemTech Research 2:155–62.
  • Sundar, V. J., J. Raghavarao, C. Muralidharan, and A. Mandal. 2011. Recovery and utilization of chromium-tanned proteinous wastes of leather making. Critical Reviews in Environmental Science and Technology 41 (22):2048–75. doi: 10.1080/10643389.2010.497434.
  • Tchounwou, P. B., C. G. Yedjou, A. K. Patlolla, and D. J. Sutton. 2012. Heavy metal toxicity and the environment. Experientia Supplementum 101:133–64. doi: 10.1007/978-3-7643-8340-4_6.
  • Thangagiri, B., A. Sakthivel, K. Jeyasubramanian, S. Seenivasan, J. D. Raja, and K. Yun. 2022. Removal of hexavalent chromium by biochar derived from Azadirachta indica leaves: Batch and column studies. Chemosphere 286 (Pt 1):131598. doi: 10.1016/j.chemosphere.2021.131598.
  • Trakal, L., D. Bingöl, M. Pohořelý, M. Hruška, and M. Komárek. 2014. Geochemical and spectroscopic investigations of Cd and Pb sorption mechanisms on contrasting biochars: Engineering implications. Bioresource Technology 171:442–51. doi: 10.1016/j.biortech.2014.08.108.
  • Ucar, S., M. Erdem, T. Tay, and T. Karagoz. 2015. Removal of lead (II) and nickel (II) ions from aqueous solution using activated carbon prepared from rapeseed oil cake by Na2 CO3 activation. Clean Technologies and Environmental Policy 17 (3):747–56. doi: 10.1007/s10098-014-0830-8.
  • USEPA. 1983. Metals (atomic absorption methods) sample handling and preservation. In Methods for chemical analysis of water and wastes, 58–61. Washington, DC: USEPA.
  • USEPA. 1993. Standards for the use or disposal of sewage sludge. Federal Register 58:210–238. https://www.epa.gov/sites/default/files/2020-02/documents/fr-2-19-1993-sewage-sludge.pdf.
  • Wang, S. Y., Y. K. Tang, C. Chen, J. T. Wu, Z. Huang, Y. Mo, K. X. Zhang, and J. B. Chen. 2015. Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead(II) removal. Bioresource Technology 186:360–4. doi: 10.1016/j.biortech.2015.03.139.
  • Wu, Y., L. Cha, Y. Fan, P. Fang, Z. Ming, and H. Sha. 2017. Activated biochar prepared by pomelo peel using H3PO4 for the adsorption of hexavalent chromium: Performance and mechanism. Water, Air, & Soil Pollution 228 (10):1–13. doi: 10.1007/s11270-017-3587-y.
  • Yahya, M. D., A. S. Aliyu, K. S. Obayomi, A. G. Olugbenga, and U. B. Abdullahi. 2020. Column adsorption study for the removal of chromium and manganese ions from electroplating wastewater using cashew nutshell adsorbent. Cogent Engineering 7 (1):1748470. doi: 10.1080/23311916.2020.1748470.
  • Yoon, Y. H., and J. H. Nelson. 1984. Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life. American Industrial Hygiene Association Journal 45 (8):509–516. doi: 10.1080/15298668491400197
  • Yusif, B., K. Bichi, O. Oyekunle, A. Girei, P. Garba, and F. Garba. 2016. A Review of Tannery Effluent Treatment. International Journal of Applied Science and Mathematical Theory 2 (3):45–8. https://www.iiardjournals.org/get/IJASMT/VOL.%202%20NO.%203%202016/A%20REVIEW%20OF%20TANNERY.pdf.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.