95
Views
0
CrossRef citations to date
0
Altmetric
Articles

Candida palmioleophila Carba14 is capable of degrading carbamazepine

, , , , , & show all
Pages 191-201 | Published online: 17 Oct 2023

References

  • Aguirre-Martínez, G. V., A. T. DelValls, and L. M. Martín-Díaz. 2015. Yes, caffeine, ibuprofen, carbamazepine, novobiocin and tamoxifen have an effect on Corbicula fluminea. Ecotoxicology and Environmental Safety 120:142–54. doi:10.1016/j.ecoenv.2015.05.036.
  • Ali, M. E. M., A. M. A. El-Aty, M. I. Badawy, and R. K. Ali. 2018. Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus. Ecotoxicology and Environmental Safety 151:144–52. doi:10.1016/j.ecoenv.2018.01.012.
  • Awe, S., A. Mikolasch, E. Hammer, and F. Schauer. 2008. Degradation of phenylalkanes and characterization of aromatic intermediates acting as growth inhibiting substances in hydrocarbon utilizing yeast Candida maltosa. International Biodeterioration & Biodegradation 62 (4):408–14. doi:10.1016/j.ibiod.2008.03.007.
  • Becerril-Bravo, J. E. 2009. Contaminantes emergentes en el agua. Revista Digital Universitaria 10 (8):1–7.http://www.revista.unam.mx/vol.10/num8/art54/int54.htm.
  • Bessa, V. S., I. S. Moreira, M. E. Tiritan, and P. L. Castro. 2017. Enrichment of bacterial strains for the biodegradation of diclofenac and carbamazepine from activated sludge. International Biodeterioration & Biodegradation 120:135–42. doi:10.1016/j.ibiod.2017.02.008.
  • Bessa, V. S., I. S. Moreira, S. Murgolo, G. Mascolo, and P. M. L. Castro. 2019. Carbamazepine is degraded by the bacterial strain Labrys portucalensis F11. The Science of the Total Environment 690:739–47. doi:10.1016/j.scitotenv.2019.06.461.
  • Brandt, M. E., and S. R. Lockhart. 2012. Recent taxonomic developments with Candida and other opportunistic yeasts. Current Fungal Infection Reports 6 (3):170–7. doi:10.1007/s12281-012-0094-x.
  • Buchicchio, A., G. Bianco, A. Sofo, S. Masi, and D. Caniani. 2016. Biodegradation of carbamazepine and clarithromycin by Trichoderma harzianum and Pleurotus ostreatus investigated by liquid chromatography - high-resolution tandem mass spectrometry (FTICR MS-IRMPD). The Science of the Total Environment 557–558:733–9. doi:10.1016/j.scitotenv.2016.03.119.
  • Caracciolo, A. B., E. Topp, and P. Grenni. 2015. Pharmaceuticals in the environment: Biodegradation and effects on natural microbial communities. A Review. Journal of Pharmaceutical and Biomedical Analysis 106:25–36. doi:10.1016/j.jpba.2014.11.040.
  • Cardoso, O., J. M. Porcher, and W. Sanchez. 2014. Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: Review of evidence and need for knowledge. Chemosphere 115:20–30. doi:10.1016/j.chemosphere.2014.02.004.
  • Castellet-Rovira, F., D. Lucas, M. Villagrasa, S. Rodríguez-Mozaz, D. Barceló, and M. Sarrà. 2018. Stropharia rugosoannulata and Gymnopilus luteofolius: Promising fungal species for pharmaceutical biodegradation in contaminated water. Journal of Environmental Management 207:396–404. doi:10.1016/j.jenvman.2017.07.052.
  • Chaillan, F., A. Le Flèche, E. Bury, Y.-H. Phantavong, P. Grimont, A. Saliot, and J. Oudot. 2004. Identification and biodegradation potential of tropical aerobic hydrocarbon degrading microorganisms. Research in Microbiology 155 (7):587–95. doi:10.1016/j.resmic.2004.04.006.
  • Deivasigamani, C., and N. Das. 2011. Biodegradation of Basic Violet 3 by Candida krusei isolated from textile wastewater. Biodegradation 22 (6):1169–80. doi:10.1007/s10532-011-9472-2.
  • Gadipelly, C., A. Pérez-González, G. D. Yadav, I. Ortiz, R. Ibáñez, V. K. Rathod, and K. V. Marathe. 2014. Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse. Industrial & Engineering Chemistry Research 53 (29):11571–92. doi:10.1021/ie501210j.
  • Gauthier, H., V. Yargeau, and D. G. Cooper. 2010. Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. The Science of the Total Environment 408 (7):1701–6. doi:10.1016/j.scitotenv.2009.12.012.
  • Green, M. R., and J. Sambrook. 2012. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, N.Y.
  • Guerrero-Barajas, C., B. Alanís-Sánchez, C. Flores-Ortíz, J. Cruz-Maya, and J. Jan-Roblero. 2019. Enhanced removal of methyl tert-butyl ether by yeast extract supplementation to a bacterial consortium. Revista Mexicana de Ingeniería Química 18 (2):589–604. doi:10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Guerrero.
  • Ha, H., B. Mahanty, S. Yoon, and C. G. Kim. 2016. Degradation of the long-resistant pharmaceutical compounds carbamazepine and diatrizoate using mixed microbial culture. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering 51 (6):467–71. doi:10.1080/10934529.2015.1128712.
  • Hai, F. I., S. Yang, M. B. Asif, V. Sencadas, S. Shawkat, M. Sanderson-Smith, J. Gorman, Z. Q. Xu, and K. Yamamoto. 2018. Carbamazepine as a possible anthropogenic marker in water: Occurrences, toxicological effects, regulations and removal by wastewater treatment technologies. Water 10 (2):107. doi:10.3390/w10020107.
  • Hatakka, A., and K. E. Hammel. 2011. Fungal biodegradation of lignocelluloses. In industrial applications: The mycota a comprehensive treatise on fungi as xxperimental systems for basic and applied research, ed. M. Hofrichter, 319–40.Berlin: Springer. doi:10.1007/978-3-642-11458-8_15.
  • Jafari, N., R. Kasra-Kermanshahi, and M. R. Soudi. 2013. Screening, identification and optimization of a yeast strain, Candida palmioleophila JKS4, capable of azo dye decolorization. Iranian Journal of Microbiology 5:434–40.
  • Kähkönen, M. A., O. Miettinen, A. Kinnunen, and A. Hatakka. 2017. Effects of gadolinium and tin to the production of oxidative enzymes and the growth of five basidiomycetous fungi. Expert Opinion on Environmental Biology 06 (01):1–4. doi:10.4172/2325-9655.1000139.
  • Kasonga, T. K., M. A. A. Coetzee, I. Kamika, and M. N. B. Momba. 2021. Assessing the fungal simultaneous removal efficiency of carbamazepine, diclofenac and ibuprofen in aquatic environment. Frontiers in Microbiology 12:755972. doi:10.3389/fmicb.2021.755972.
  • Krug, M., H. Ziegler, and G. Straube. 1985. Degradation of phenolic compounds by the yeast Candida tropicalis HP 15 I. Physiology of growth and substrate utilization. Journal of Basic Microbiology 25 (2):103–10. doi:10.1002/jobm.3620250206.
  • Kumar, A., B. S. Bisht, V. Joshi, and T. Dhewa. 2011. Review on bioremediation of polluted environment: A management. International Journal of Environmental Science 1:6.
  • Lee, H., Y. Jang, Y. S. Choi, M. J. Kim, J. Lee, H. Lee, J. H. Hong, Y. M. Lee, G. H. Kim, and J. J. Kim. 2014. Biotechnological procedures to select white rot fungi for the degradation of PAHs. Journal of Microbiological Methods 97:56–62. doi:10.1016/j.mimet.2013.12.007.
  • León-Santiesteban, H., R. Bernal, F. J. Fernández, and A. Tomasini. 2008. Tyrosinase and peroxidase production by Rhizopus oryzae strain ENHE obtained from pentachlorophenol-contaminated soil. Journal of Chemical Technology & Biotechnology 83 (10):1394–400. doi:10.1002/jctb.1955.
  • Li, A., R. Cai, C. Di, T. Qiu, C. Pang, J. Yang, F. Ma, and N. Ren. 2013. Characterization and biodegradation kinetics of a new cold-adapted carbamazepine-degrading bacterium, Pseudomonas sp. CBZ-4. Journal of Environmental Sciences (China) 25 (11):2281–90. doi:10.1016/s1001-0742(12)60293-9.
  • Li, X., R. A. de Toledo, S. Wang, and H. Shim. 2015. Removal of carbamazepine and naproxen by immobilized Phanerochaete chrysosporium under non-sterile condition. New Biotechnology 32 (2):282–9. doi:10.1016/j.nbt.2015.01.003.
  • Marco-Urrea, E., M. Pérez-Trujillo, T. Vicent, and G. Caminal. 2009. Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74 (6):765–72. doi:10.1016/j.chemosphere.2008.10.040.
  • Martorell, M. M., H. F. Pajot, P. M. Ahmed, and L. I. C. de Figueroa. 2017. Biodecoloration of reactive black 5 by the methylotrophic yeast Candida boidinii MM 4035. Journal of Environmental Sciences (China) 53:78–87. doi:10.1016/j.jes.2016.01.033.
  • Muter, O. P., I. Erkons, T. Selga, A. Berzins, D. Gudra, I. Radovica-Spalvina, D. Fridmanis, and V. Bartkevics. 2017. Removal of pharmaceuticals from municipal wastewaters at laboratory scale by treatment with activated sludge and biostimulation. The Science of the Total Environment 584-585:402–13. doi:10.1016/j.scitotenv.2017.01.023.
  • Nakada, N., H. Shinohara, A. Murata, K. Kiri, S. Managaki, N. Sato, and H. Takada. 2007. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Research 41 (19):4373–82. doi:10.1016/j.watres.2007.06.038.
  • Nakase, T., M. Itoh, M. Suzuki, K. Komagata, and T. Kodama. 1988. Candida palmioleophila sp. nov. a yeast capable of assimilating crude palm oil, formerly identified as Torulopsis candida. The Journal of General and Applied Microbiology 34 (6):493–8. doi:10.2323/jgam.34.493.
  • Nguyen, L. N., F. I. Hai, S. Yang, J. Kang, F. D. L. Leusch, F. Roddick, W. E. Price, and L. D. Nghiem. 2014. Removal of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals and pesticides by Trametes versicolor: Role of biosorption and biodegradation. International Biodeterioration & Biodegradation 88:169–75. doi:10.1016/j.ibiod.2013.12.017.
  • Olicón-Hernández, D. R., J. González-López, and E. Aranda. 2017. Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds. Frontiers in Microbiology 8:1792. doi:10.3389/fmicb.2017.01792.
  • Pawłowska, J., T. Aleksandrzak-Piekarczyk, A. Banach, B. Kiersztyn, A. Muszewska, L. Serewa, K. Szatraj, and M. Wrzosek. 2016. Preliminary studies on the evolution of carbon assimilation abilities within Mucorales. Fungal Biology 120 (5):752–63. doi:10.1016/j.funbio.2016.02.004.
  • Popa, C., L. Favier, R. Dinica, S. Semrany, H. Djelal, A. Amrane, and G. Bahrim. 2014. Potential of newly isolated wild Streptomyces strains as agents for the biodegradation of a recalcitrant pharmaceutical, carbamazepine. Environmental Technology 35 (21–24):3082–91. doi:10.1080/09593330.2014.931468.
  • Rios-Miguel, A. B., M. S. M. Jetten, and C. U. Welte. 2021. Effect of concentration and hydraulic reaction time on the removal of pharmaceutical compounds in a membrane bioreactor inoculated with activated sludge. Microbial Biotechnology 14 (4):1707–21. doi:10.1111/1751-7915.13837.
  • Romer, M. C., E. Hammer, M. C. Cazau, and A. M. Arambarri. 2002. Isolation and characterization of biarylic structure-degrading yeasts: Hydroxylation potential of dibenzofuran. Environmental Pollution (Barking, Essex: 1987) 118 (3):379–82. doi:10.1016/s0269-7491(01)00290-1.
  • Šlosarčíková, P., D. Plachá, K. Malachová, Z. Rybková, and Č. Novotný. 2020. Biodegradation of reactive orange 16 azo dye by simultaneous action of Pleurotus ostreatus and the yeast Candida zeylanoides. Folia Microbiologica 65 (4):629–38. doi:10.1007/s12223-019-00767-3.
  • Tan, L., Y. Shao, G. Mu, S. Ning, and S. Shi. 2020. Enhanced azo dye biodegradation performance and halotolerance of Candida tropicalis SYF-1 by static magnetic field (SMF). Bioresource Technology 295:122283. doi:10.1016/j.biortech.2019.122283.
  • Tyumina, E. A., G. A. Bazhutin, A. D. P. Cartagena Gómez, and I. B. Ivshina. 2020. Nonsteroidal anti-inflammatory drugs as emerging contaminants. Microbiology 89 (2):148–63. doi:10.1134/S0026261720020125.
  • White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic Press 38:315–22. doi:10.1016/b978-0-12-372180-8.50042-1.
  • Xie, M., L. Xu, R. Zhang, Y. Zhou, Y. Xiao, X. Su, C. Shen, F. Sun, M. Z. Hashmi, H. Lin, et al. 2021. Viable but nonculturable state of yeast Candida sp. strain LN1 induced by high phenol concentrations. Applied and Environmental Microbiology 87 (18):e0111021. doi:10.1128/AEM.01110-21.
  • Yang, Q., H. Zhang, X. Li, Z. Wang, Y. Xu, S. Ren, X. Chen, Y. Xu, H. Hao, and H. Wang. 2013. Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems. Bioresource Technology 129:264–73. doi:10.1016/j.biortech.2012.11.101.
  • Zhang, Y., S. U. Geissen, and C. Gal. 2008. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73 (8):1151–61. doi:10.1016/j.chemosphere.2008.07.086.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.