68
Views
0
CrossRef citations to date
0
Altmetric
Cell Biology

SPRING is a Dedicated Licensing Factor for SREBP-Specific Activation by S1P

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 123-137 | Received 11 Jul 2023, Accepted 10 Apr 2024, Published online: 15 May 2024

References

  • Goldstein JL, DeBose-Boyd RA, Brown MS. Protein sensors for membrane sterols. Cell. 2006;124:35–46. doi:10.1016/j.cell.2005.12.022.
  • Jeon TI, Osborne TF. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab. 2012;23:65–72. PMID: 22154484. doi:10.1016/j.tem.2011.10.004.
  • Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109:1125–1131. doi:10.1172/jci200215593.
  • Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, Brown MS. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993;75:187–197. doi:10.1016/S0092-8674(05)80095-9.
  • Hua X, Yokoyama C, Wu J, Briggs MR, Brown MS, Goldstein JL, Wang X. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc Natl Acad Sci USA. 1993;90:11603–11607. doi:10.1073/pnas.90.24.11603.
  • Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab. 2008;8:512–521. doi:10.1016/j.cmet.2008.10.008.
  • Sakai J, Duncan EA, Rawson RB, Hua X, Brown MS, Goldstein JL. Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell. 1996;85:1037–1046. doi:10.1016/s0092-8674(00)81304-5.
  • Brown MS, Radhakrishnan A, Goldstein JL. Retrospective on cholesterol homeostasis: I central role of scap. Annu Rev Biochem. 2018;87:783–807. doi:10.1146/annurev-biochem-062917-011852.
  • Seidah NG, Mowla SJ, Hamelin J, Mamarbachi AM, Benjannet S, Touré BB, Basak A, Munzer JS, Marcinkiewicz J, Zhong M, et al. Mammalian subtilisin/kexin isozyme SKI-1: a widely expressed proprotein convertase with a unique cleavage specificity and cellular localization. Proc Natl Acad Sci USA. 1999;96:1321–1326. doi:10.1073/pnas.96.4.1321.
  • Espenshade PJ, Cheng D, Goldstein JL, Brown MS. Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins. J Biol Chem. 1999;274:22795–22804. doi:10.1074/jbc.274.32.22795.
  • Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov. 2012;11:367–383. doi:10.1038/nrd3699.
  • da Palma JR, Cendron L, Seidah NG, Pasquato A, Kunz S. Mechanism of folding and activation of subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P). J Biol Chem. 2016;291:2055–2066. doi:10.1074/jbc.M115.677757.
  • da Palma JR, Burri DJ, Oppliger J, Salamina M, Cendron L, de Laureto PP, Seidah NG, Kunz S, Pasquato A. Zymogen activation and subcellular activity of subtilisin kexin isozyme 1/site 1 protease. J Biol Chem. 2014;289:35743–35756. doi:10.1074/jbc.M114.588525.
  • Elagoz A, Benjannet S, Mammarbassi A, Wickham L, Seidah NG. Biosynthesis and cellular trafficking of the convertase SKI-1/S1P: ectodomain shedding requires SKI-1 activity. J Biol Chem. 2002;277:11265–11275. doi:10.1074/jbc.M109011200.
  • Danyukova T, Schöneck K, Pohl S. Site-1 and site-2 proteases: a team of two in regulated proteolysis. Biochim Biophys Acta Mol Cell Res. 2022;1869:119138. doi:10.1016/j.bbamcr.2021.119138.
  • Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R, Brown MS, Goldstein JL. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000;6:1355–1364. doi:10.1016/s1097-2765(00)00133-7.
  • Chen X, Shen J, Prywes R. The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem. 2002;277:13045–13052. doi:10.1074/jbc.M110636200.
  • Raggo C, Rapin N, Stirling J, Gobeil P, Smith-Windsor E, O’Hare P, Misra V. Luman, the cellular counterpart of herpes simplex virus VP16, is processed by regulated intramembrane proteolysis. Mol Cell Biol. 2002;22:5639–5649. doi:10.1128/MCB.22.16.5639-5649.2002.
  • Denard B, Lee C, Ye J. Doxorubicin blocks proliferation of cancer cells through proteolytic activation of CREB3L1. Elife. 2012;1:e00090. doi:10.7554/eLife.00090.
  • Stirling J, O’Hare P. CREB4, a transmembrane bzip transcription factor and potential new substrate for regulation and cleavage by S1P. Mol Biol Cell. 2006;17:413–426. doi:10.1091/mbc.e05-06-0500.
  • Chan CP, Mak TY, Chin KT, Ng IO, Jin DY. N-linked glycosylation is required for optimal proteolytic activation of membrane-bound transcription factor CREB-H. J Cell Sci. 2010;123:1438–1448. doi:10.1242/jcs.067819.
  • Marschner K, Kollmann K, Schweizer M, Braulke T, Pohl S. A key enzyme in the biogenesis of lysosomes is a protease that regulates cholesterol metabolism. Science. 2011;333:87–90. doi:10.1126/science.1205677.
  • Chen X, Zhang J, Liu P, Wei Y, Wang X, Xiao J, Wang CC, Wang L. Proteolytic processing of secretory pathway kinase FAM20C by site-1 protease promotes biomineralization. Proc Natl Acad Sci USA. 2021;118:e2100133118. doi:10.1073/pnas.2100133118.
  • Nakagawa T, Suzuki-Nakagawa C, Watanabe A, Asami E, Matsumoto M, Nakano M, Ebihara A, Uddin MN, Suzuki F. Site-1 protease is required for the generation of soluble (pro)renin receptor. J Biochem. 2017;161:369–379. doi:10.1093/jb/mvw080.
  • Lenz O, ter Meulen J, Klenk HD, Seidah NG, Garten W. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci USA. 2001;98:12701–12705. doi:10.1073/pnas.221447598.
  • Seidah NG, Pasquato A, Andréo U. How do enveloped viruses exploit the secretory proprotein convertases to regulate infectivity and spread? Viruses. 2021;13:1229. doi:10.3390/v13071229.
  • Loregger A, Raaben M, Nieuwenhuis J, Tan JME, Jae LT, van den Hengel LG, Hendrix S, van den Berg M, Scheij S, Song J-Y, et al. Haploid genetic screens identify SPRING/C12ORF49 as a determinant of SREBP signaling and cholesterol metabolism. Nat Commun. 2020;11:1128. doi:10.1038/s41467-020-14811-1.
  • Hendrix S, Zelcer N. A new spring in lipid metabolism. Curr Opin Lipidol. 2023;34:201–207. doi:10.1097/MOL.0000000000000894.
  • Bayraktar EC, La K, Karpman K, Unlu G, Ozerdem C, Ritter DJ, Alwaseem H, Molina H, Hoffmann H-H, Millner A, et al. Metabolic coessentiality mapping identifies C12ORF49 as a regulator of SREBP processing and cholesterol metabolism. Nat Metab. 2020;2:487–498. doi:10.1038/s42255-020-0206-9.
  • Aregger M, Lawson KA, Billmann M, Costanzo M, Tong AHY, Chan K, Rahman M, Brown KR, Ross C, Usaj M, et al. Systematic mapping of genetic interactions for de novo fatty acid synthesis identifies C12ORF49 as a regulator of lipid metabolism. Nat Metab. 2020;2:499–513. doi:10.1038/s42255-020-0211-z.
  • Shao W, Espenshade PJ. Sterol regulatory element-binding protein (SREBP) cleavage regulates golgi-to-endoplasmic reticulum recycling of SREBP cleavage-activating protein (SCAP). J Biol Chem. 2014;289:7547–7557. doi:10.1074/jbc.M113.545699.
  • Xiao J, Xiong Y, Yang LT, Wang JQ, Zhou ZM, Dong LW, Shi XJ, Zhao X, Luo J, Song BL. POST1/C12ORF49 regulates the SREBP pathway by promoting site-1 protease maturation. Protein Cell. 2021;12:279–296. doi:10.1007/s13238-020-00753-3.
  • Hendrix S, Kingma J, Ottenhoff R, Valiloo M, Svecla M, Zijlstra LF, Sachdev V, Kovac K, Levels JHM, Jongejan A, et al. Hepatic SREBP signaling requires spring to govern systemic lipid metabolism in mice and humans. Nat Commun. 2023;14:5181. PMID: 37626055. doi:10.1038/s41467-023-40943-1.
  • Hawkins JL, Robbins MD, Warren LC, Xia D, Petras SF, Valentine JJ, Varghese AH, Wang IK, Subashi TA, Shelly LD, et al. Pharmacologic inhibition of site 1 protease activity inhibits sterol regulatory element-binding protein processing and reduces lipogenic enzyme gene expression and lipid synthesis in cultured cells and experimental animals. J Pharmacol Exp Ther. 2008;326:801–808. doi:10.1124/jpet.108.139626.
  • Hay BA, Abrams B, Zumbrunn AY, Valentine JJ, Warren LC, Petras SF, Shelly LD, Xia A, Varghese AH, Hawkins JL, et al. Aminopyrrolidineamide inhibitors of site-1 protease. Bioorg Med Chem Lett. 2007;17:4411–4414. doi:10.1016/j.bmcl.2007.06.031.
  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. Highly accurate protein structure prediction with alphafold. Nature. 2021;596:583–589. doi:10.1038/s41586-021-03819-2.
  • Kondo Y, Fu J, Wang H, Hoover C, McDaniel JM, Steet R, Patra D, Song J, Pollard L, Cathey S, et al. Site-1 protease deficiency causes human skeletal dysplasia due to defective inter-organelle protein trafficking. JCI Insight. 2018;3:e121596. doi:10.1172/jci.insight.121596.
  • Keshishian H, Burgess MW, Gillette MA, Mertins P, Clauser KR, Mani DR, Kuhn EW, Farrell LA, Gerszten RE, Carr SA. Multiplexed, quantitative workflow for sensitive biomarker discovery in plasma yields novel candidates for early myocardial injury. Mol Cell Proteomics. 2015;14:2375–2393. doi:10.1074/mcp.M114.046813.
  • Dey KK, Wang H, Niu M, Bai B, Wang X, Li Y, Cho JH, Tan H, Mishra A, High AA, et al. Deep undepleted human serum proteome profiling toward biomarker discovery for Alzheimer’s disease. Clin Proteomics. 2019;16:16. doi:10.1186/s12014-019-9237-1.
  • Pernemalm M, Sandberg A, Zhu Y, Boekel J, Tamburro D, Schwenk JM, Björk A, Wahren-Herlenius M, Åmark H, Östenson C-G, et al. In-depth human plasma proteome analysis captures tissue proteins and transfer of protein variants across the placenta. Elife. 2019;8:e41608. doi:10.7554/eLife.41608.
  • Yang J, Goldstein JL, Hammer RE, Moon YA, Brown MS, Horton JD. Decreased lipid synthesis in livers of mice with disrupted site-1 protease gene. Proc Natl Acad Sci USA. 2001;98:13607–13612. doi:10.1073/pnas.201524598.
  • Matsuda M, Korn BS, Hammer RE, Moon YA, Komuro R, Horton JD, Goldstein JL, Brown MS, Shimomura I. SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev. 2001;15:1206–1216. doi:10.1101/gad.891301.
  • Zelcer N, Hong C, Boyadjian R, Tontonoz P. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science. 2009;325:100–104. doi:10.1126/science.1168974.
  • Pullikotil P, Vincent M, Nichol ST, Seidah NG. Development of protein-based inhibitors of the proprotein of convertase SKI-1/S1P: processing of SREBP-2, ATF6, and a viral glycoprotein. J Biol Chem. 2004;279:17338–17347. doi:10.1074/jbc.M313764200.
  • Nathwani AC, Gray JT, Ng CY, Zhou J, Spence Y, Waddington SN, Tuddenham EG, Kemball-Cook G, McIntosh J, Boon-Spijker M, et al. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood. 2006;107:2653–2661. doi:10.1182/blood-2005-10-4035.
  • van Wouw SAE, van den Berg M, El Ouraoui M, Meurs A, Kingma J, Ottenhoff R, Loix M, Hoeksema MA, Prange K, Pasterkamp G, et al. Sterol-regulated transmembrane protein TMEM86A couples LXR signaling to regulation of lysoplasmalogens in macrophages. J Lipid Res. 2023;64:100325. doi:10.1016/j.jlr.2022.100325.
  • Sokolović A, Montenegro-Miranda PS, de Waart DR, Cappai RMN, Duijst S, Sokolović M, Bosma PJ. Overexpression of insulin like growth factor binding protein 5 reduces liver fibrosis in chronic cholangiopathy. Biochim Biophys Acta. 2012;1822:996–1003. doi:10.1016/j.bbadis.2012.02.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.