558
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Cloning and Expression Analysis of Bioluminescence Genes in Omphalotus guepiniiformis Reveal Stress-Dependent Regulation of Bioluminescence

, , , , &
Pages 42-50 | Received 29 Aug 2023, Accepted 03 Jan 2024, Published online: 23 Jan 2024

References

  • Wilson T, Hastings JW. Bioluminescence. Annu Rev Cell Dev Biol. 1998;14(1):197–230. doi: 10.1146/annurev.cellbio.14.1.197.
  • Haddock SH, Moline MA, Case JF. Bioluminescence in the sea. Ann Rev Mar Sci. 2010;2(1):443–493. doi: 10.1146/annurev-marine-120308-081028.
  • Oba Y, Schultz DT. Eco-evo bioluminescence on land and in the sea. Adv Biochem Eng Biotechnol. 2014;144:3–36. doi: 10.1007/978-3-662-43385-0_1.
  • Kahlke T, Umbers KDL. Bioluminescence. Curr Biol. 2016;26(8):R313–4. doi: 10.1016/j.cub.2016.01.007.
  • Lau ES, Oakley TH. Multi-level convergence of complex traits and the evolution of bioluminescence. Biol Rev Camb Philos Soc. 2021;96(2):673–691. doi: 10.1111/brv.12672.
  • Syed A, Anderson JC. Applications of bioluminescence in biotechnology and beyond. Chem Soc Rev. 2021;50(9):5668–5705. doi: 10.1039/d0cs01492c.
  • Tsarkova AS. Luciferins under construction: a review of known biosynthetic pathways. Front Ecol Evol. 2021;9:667829. doi: 10.3389/fevo.2021.667829.
  • Ke HM, Tsai IJ. Understanding and using fungal bioluminescence - recent progress and future perspectives. Curr Opin Green Sustain Chem. 2022;33:100570. doi: 10.1016/j.cogsc.2021.100570.
  • Purtov KV, Petushkov VN, Baranov MS, et al. The chemical basis of fungal bioluminescence. Angew Chem Int Ed Engl. 2015;54(28):8124–8128. doi: 10.1002/anie.201501779.
  • Kotlobay AA, Sarkisyan KS, Mokrushina YA, et al. Genetically encodable bioluminescent system from fungi. Proc Natl Acad Sci U S A. 2018;115(50):12728–12732. doi: 10.1073/pnas.1803615115.
  • Ke HM, Lee HH, Lin CYI, et al. Mycena genomes resolve the evolution of fungal bioluminescence. Proc Natl Acad Sci U S A. 2020;117(49):31267–31277. doi: 10.1073/pnas.2010761117.
  • Kim JW, Park MJ, Shim DH, et al. De novo genome assembly of the bioluminescent mushroom Omphalotus guepiniiformis reveals an Omphalotus-specific lineage of the luciferase gene block. Genomics. 2022;114(6):110514. doi: 10.1016/j.ygeno.2022.110514.
  • Khakhar A, Starker CG, Chamness JC, et al. Building customizable auto-luminescent luciferase-based reporters in plants. Elife. 2020;9:e52786. doi: 10.7554/eLife.52786.
  • Mitiouchkina T, Mishin AS, Somermeyer LG, et al. Plants with genetically encoded autoluminescence. Nat Biotechnol. 2020;38(8):944–946. doi: 10.1038/s41587-020-0500-9.
  • Bermudes D, Petersen RH, Nealson KH. NealsonKH. Low-level bioluminescence detected in Mycena haematopus basidiocarps. Mycologia. 1992;84(5):799–802. doi: 10.1080/00275514.1992.12026208.
  • Niitsu H, Hanyuda N, Sugiyama Y. Cultural properites of a luminous mushroom, Mycena chlorophos. Mycoscience. 2000;41(6):551–558. doi: 10.1007/BF02460920.
  • Weitz HJ, Ballard AL, Campbell CD, et al. The effect of culture conditions on the mycelial growth and luminescence of naturally bioluminescent fungi. FEMS Microbiol Lett. 2001;202(2):165–170. doi: 10.1111/j.1574-6968.2001.tb10798.x.
  • Mendes LF, Bastos EL, Desjardin DE, et al. Influence of culture conditions on mycelial growth and bioluminescence of Gerronema viridilucens. FEMS Microbiol Lett. 2008;282(1):132–139. doi: 10.1111/j.1574-6968.2008.01118.x.
  • Medvedeva SE, Artemenko KS, Krivosheenko AA, et al. Growth and light emission of luminous basidiomycetes cultivated on solid media and in submerged culture. Mycosphere. 2014;5(4):565–577. doi: 10.5943/mycosphere/5/4/9.
  • Ventura FF, Soares DMM, Bayle K, et al. Toxicity of metal cations and phenolic compounds to the bioluminescent fungus Neonothopanus gardneri. Environ Adv. 2021;4:100044. doi: 10.1016/j.envadv.2021.100044.
  • Mihail JD, Bilyeu L, Lalk SR. Bioluminescence expression during the transition from mycelium to mushroom in three North American Armillaria and Desarmillaria species. Fungal Biol. 2018;122(11):1064–1068. doi: 10.1016/j.funbio.2018.08.007.
  • Oliveira AG, Stevani CV, Waldenmaier HE, et al. Circadian control sheds light on fungal bioluminescence. Curr Biol. 2015;25(7):964–968. doi: 10.1016/j.cub.2015.02.021.
  • Isobe M, Uyakul D, Goto T. Lampteromyces bioluminescence - 1. Identification of riboflavin as the light emitter in the mushroom L. japonicus. J Biolumin Chemilumin. 1987;1(3):181–188. doi: 10.1002/bio.1170010306.
  • Park MJ, Lee H, Ryoo R. Changes in bioluminescence of Omphalotus japonicus mycelia under environmental stress conditions. Kor J Mycol. 2020;48(4):381–388. doi: 10.4489/KJM.20200037.
  • Oba Y, Suzuki Y, Martins GNR, et al. Identification of hispidin as a bioluminescent active compound and its recycling biosynthesis in the luminous fungal fruiting body. Photochem Photobiol Sci. 2017;16(9):1435–1440. doi: 10.1039/c7pp00216e.
  • Desjardin DE, Oliveira AG, Stevani CV. Fungi bioluminescence revisited. Photochem Photobiol Sci. 2008;7(2):170–182. doi: 10.1039/b713328f.
  • Pelkmans JF, Patil MB, Gehrmann T, et al. Transcription factors of Schizophyllum commune involved in mushroom formation and modulation of vegetative growth. Sci Rep. 2017;7(1):310. doi: 10.1038/s41598-017-00483-3.
  • Wu T, Hu C, Xie B, et al. A single transcription factor (PDD1) determines development and yield of winter mushroom (Flammulina velutipes). Appl Environ Microbiol. 2019;85(24):e01735-19. doi: 10.1128/AEM.01735-19.
  • Meng L, Lyu X, Shi L, et al. The transcription factor FvHmg1 negatively regulates fruiting body development in winter mushroom Flammulina velutipes. Gene. 2021;785:145618. doi: 10.1016/j.gene.2021.145618.
  • Ding Q, Zhao H, Zhu P, et al. Genome-wide identification and expression analyses of C2H2 zinc finger transcription factors in Pleurotus ostreatus. PeerJ. 2022;10:e12654. doi: 10.7717/peerj.12654.
  • Lyu X, Wang Q, Liu A, et al. The transcription factor Ste12-like increases the mycelial abiotic stress tolerance and regulates the fruiting body development of Flammulina filiformis. Front Microbiol. 2023;14:1139679. doi: 10.3389/fmicb.2023.1139679.
  • Sivinski JM. Arthropods attracted to luminous fungi. Psyche. 1981;88(3-4):383–390. doi: 10.1155/1981/79890.
  • De Magalhaes Filho CD, Henriquez B, Seah NE, et al. Visible light reduces C. elegans longevity. Nat Commun. 2018;9(1):927. doi: 10.1038/s41467-018-02934-5.
  • Xing YM, Zhang LC, Liang HQ, et al. Sclerotial formation of Polyporus umbellatus by low temperature treatment under artificial conditions. PLOS One. 2013;8(2):e56190. doi: 10.1371/journal.pone.0056190.
  • Liu R, Zhang X, Ren A, et al. Heat stress-induced reactive oxygen species participate in the regulation of HSP expression, hyphal branching and ganoderic acid biosynthesis in Ganoderma lucidum. Microbiol Res. 2018;209:43–54. doi: 10.1016/j.micres.2018.02.006.
  • Lei M, Wu X, Huang C, et al. Trehalose induced by reactive oxygen species relieved the radial growth defects of Pleurotus ostreatus under heat stress. Appl Microbiol Biotechnol. 2019;103(13):5379–5390. doi: 10.1007/s00253-019-09834-8.
  • Iwahashi H, Ishii T, Sugata R, et al. The effects of caffeic acid and its related catechols on hydroxyl radical formation by 3-hydroxyanthranilic acid, ferric chloride, and hydrogen peroxide. Arch Biochem Biophys. 1990;276(1):242–247. doi: 10.1016/0003-9861(90)90033-u.
  • Park IH, Chung SK, Lee KB, et al. An antioxidant hispidin from the mycelial cultures of Phellinus linteus. Arch Pharm Res. 2004;27(6):615–618. doi: 10.1007/BF02980159.
  • Gülçin I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology. 2006;217(2-3):213–220. doi: 10.1016/j.tox.2005.09.011.
  • Chen W, Shen Y, Su H, et al. Hispidin derived from Phellinus linteus affords protection against acrylamide-induced oxidative stress in caco-2 cells. Chem Biol Interact. 2014;219:83–89. doi: 10.1016/j.cbi.2014.05.010.
  • Ka KH, Park H, Hur TC, et al. Formation of fruiting body of Omphalotus japonicus by sawdust cultivation. Kor J Mycol. 2010;38(1):80–82. doi: 10.4489/KJM.2010.38.1.080.