132
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Uncertainty modelling and assessment of shear resistance in reinforced concrete beams without shear reinforcement

&
Pages 295-314 | Received 15 Sep 2023, Accepted 12 Dec 2023, Published online: 23 Dec 2023

References

  • ABNT NBR6118. 2014. Design of Concrete Structures - Procedure. Rio de Janeiro, RJ: Associação Brasileira de Normas Técnicas.
  • Abou El-Mal, H., A. Sherbini, and H. Sallam. 2015. “Locating the Site of Diagonal Tension Crack Initiation and Path in Reinforced Concrete Beams.” Ain Shams Engineering Journal 6 (1): 17–24. https://doi.org/10.1016/j.asej.2014.10.006.
  • ACI, A. 2019. 318-19 & ACI 318R-19: Building Code Requirements for Structural Concrete and Commentary. Farmington Hills, MI, USA: American Concrete Institute.
  • Arslan, G. 2012. “DIAGONAL TENSION FAILURE OF RC BEAMS WITHOUT STIRRUPS / SKERSINE ARMATŪRA NEARMUOTŲ GELŽBETONINIŲ SIJŲ TEMPIAMASIS SUIRIMAS ĮSTRIŽAJAME PJŪVYJE.” Journal of Civil Engineering and Management 18 (2): 217–226. https://doi.org/10.3846/13923730.2012.671264.
  • AS 3600-2018. 2018. Concrete Structures. Sydney: Standards Australia Limited: Australia.
  • Baghi, H., and J. A. Barros. 2018. “Design‐Oriented Approach to Predict Shear Strength of Reinforced Concrete Beams.” Structural Concrete 19 (1): 98–115. https://doi.org/10.1002/suco.201700095.
  • Bai, Y., and W.-L. Jin. 2016. “Random Variables and Uncertainty Analysis.” Marine Structural Design 12:615–625.
  • Borishansky, M. 1961. “Shear Strength of Reinforced Concrete Elements.” UDC 624 (3): 624.012.
  • Castaldo, P., D. Gino, G. Bertagnoli, and G. Mancini. 2020. “Resistance Model Uncertainty in Non-Linear Finite Element Analyses of Cyclically Loaded Reinforced Concrete Systems.” Engineering Structures 211:110496. https://doi.org/10.1016/j.engstruct.2020.110496.
  • Chowdhury, S., and Y.-C. Loo. 2019. “The New Australian Concrete Structures Standard as 3600: 2018–Aspects of Its Complexity and Effectiveness.” Athens Journal of Τechnology & Engineering 6 (3): 163. https://doi.org/10.30958/ajte.6-3-2.
  • Cladera, A. 2019. A Simplified Model for the Shear Strength in RC and PC Beams, and for Punching Shear in Slabs, without or with Shear Reinforcement, Including Steel, FRP and SMA. Potsdam, Germany: SMAR.
  • Cladera, A., Marí, A, Ribas, C, Bairán, J. 2015. Mechanical-Based Shear Model for Assessment of Reinforced And/Or Prestressed Concrete Beams. In Proceedings of theSMAR 2015-Third Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Antalya, Turkey.
  • CSA. 2004. Design of Concrete Structures. CSA Standard A23.3-04. Canadian Standard Association (CSA). Ont: Missssauga.
  • Du Béton, F. I. 2013. Fib Model Code for Concrete Structures 2010. Lausanne, Switzerland: Wiley-vch Verlag Gmbh.
  • Franzblau, A. N. 1958. A Primer of Statistics for Non-Statisticians. Harcourt: Brace.
  • Heidarie Golafzani, S., A. Eslami, and R. Jamshidi Chenari. 2020. “Probabilistic Assessment of Model Uncertainty for Prediction of Pile Foundation Bearing Capacity; Static Analysis, SPT and CPT-Based Methods.” Geotechnical and Geological Engineering 38 (5): 5023–5041. https://doi.org/10.1007/s10706-020-01346-x.
  • Holický, M., J. V. Retief, and M. Sýkora. 2016. “Assessment of model uncertainties for structural resistance.” Probabilistic Engineering Mechanics 45:188–197. https://doi.org/10.1016/j.probengmech.2015.09.008.
  • Holický, M., J. Retief, and J. Wium. 2009. “Probabilistic Design for Cracking of Concrete Structures.” In Proceedings of the 7th International Probabilistic Workshop: 25-26 November 2009, Delft, The Netherlands edited by Pieter van Gelder, 87–98. Netherlands: Dirk Proske Verlag.
  • Jayasinghe, T., T. Gunawardena, and P. Mendis. 2022. “Assessment of Shear Strength of Reinforced Concrete Beams without Shear Reinforcement: A Comparative Study Between Codes of Practice and Artificial Neural Network.” Case Studies in Construction Materials 16:e01102. https://doi.org/10.1016/j.cscm.2022.e01102.
  • Kalkan, I., and S. Kartal. 2017. “Torsional Rigidities of Reinforced Concrete Beams Subjected to Elastic Lateral Torsional Buckling.” International Journal of Civil and Environmental Engineering 11 (7): 969–972.
  • Mancini, G. 2017. “Modelling Uncertainties in NLFEM Simulation of Cyclically Loaded RC Hear Walls. Modelling Uncertainties in NLFEM Simulation of Cyclically Loaded RC Hear Walls. In Proceedings of the XVII Convegno ANIDIS L’ingegneria Sismica in Italia, Pistoia, Italy, 17-21 September 2017, 31–40. Pisa, Italy: Pisa University Press.
  • McLeod, C. H. 2019. Model Uncertainty in the Prediction of Crack Widths in Reinforced Concrete Structures and Reliability Implications. Stellenbosch: Stellenbosch University.
  • Mellios, N., O. Uz, and P. Spyridis. 2023. “Data-Based Modeling of the Punching Shear Capacity of Concrete Structures.” Engineering Structures 275:115195. https://doi.org/10.1016/j.engstruct.2022.115195.
  • Mensah, K. K. 2012. Reliability Assessment of Structural Concrete with Special Reference to Shear Resistance. Stellenbosch: Stellenbosch University.
  • Mensah, K., J. Retief, and C. Barnardo-Viljoen. 2013. Reliability Based Application of Eurocode 2‟ S Variable Strut Inclination Method for Shear. In 11th International Conference on Structural Safety & Reliability (ICOSSAR), New York City, USA.
  • Mensah, K. K., J. V. Retief, and C. Barnardo-Viljoen. 2013. “Eurocode 2‘s Variable Strut Inclination Method for Shear, Its Modelling Uncertainty, and Reliabilty Calibration.” In Proceedings of the FIb Symposium, 22-24 April 2013, Tel-Aviv, Israel.
  • Mphonde, A. G. and G. C. Frantz. 1984.” Shear Tests of High-And Low-Strength Concrete Beams without Stirrups.” ACI Journal Proceedings 81 (4): 350–357. https://doi.org/10.14359/10690
  • Muttoni, A., and M. Fernández Ruiz. 2008. “Shear Strength of Members without Transverse Reinforcement as Function of Critical Shear Crack Width.” ACI Structural Journal 105 (ARTICLE): 163–172.
  • Olalusi, O. B. 2018. Reliability Assessment of Shear Design Provisions for Reinforced Concrete Beams with Stirrups. Stellenbosch: Stellenbosch University.
  • Olalusi, O. B., and P. O. Awoyera. 2021. “Shear Capacity Prediction of Slender Reinforced Concrete Structures with Steel Fibers Using Machine Learning.” Engineering Structures 227:111470. https://doi.org/10.1016/j.engstruct.2020.111470.
  • Olalusi, O. B., and P. Spyridis. 2020. “Uncertainty Modelling and Analysis of the Concrete Edge Breakout Resistance of Single Anchors in Shear.” Engineering Structures 222:111112. https://doi.org/10.1016/j.engstruct.2020.111112.
  • Olalusi, O. B., and C. Viljoen. 2019. “Assessment of Simplified and Advanced Models for Shear Resistance Prediction of Stirrup-Reinforced Concrete Beams.” Engineering Structures 186:96–109. https://doi.org/10.1016/j.engstruct.2019.01.130.
  • Olalusi, O. B., and C. Viljoen. 2020a. “Assessment of Reliability of EN 1992‐1‐1 Variable Strut Inclination Method of Shear Design Provisions for Stirrup Failure.” Structural Concrete 21 (1): 303–315. https://doi.org/10.1002/suco.201900220.
  • Olalusi, O. B., and C. Viljoen. 2020b. “Model Uncertainties and Bias in SHEAR Strength Predictions of Slender Stirrup Reinforced Concrete Beams.” Structural Concrete 21 (1): 316–332. https://doi.org/10.1002/suco.201800273.
  • Pacheco, J., and J. de Brito. 2019. “New Trends in Eco-Efficient and Recycled Concrete.” In Structural Reliability of Recycled Aggregate Concrete edited by de Brito Jorge, Agrela Francisco, 541–572. Netherlands: Elsevier.
  • Reineck, K.-H. 2013. “ACI-DAfstb Database of Shear Tests on Slender Reinforced Concrete Beams without Stirrups.” ACI Structural Journal 110 (5): 1147–1156. https://doi.org/10.14359/51686819.
  • Sigrist, V., E. Bentz, M. F. Ruiz, S. Foster, and A. Muttoni. 2013. “Background to the Fib Model Code 2010 Shear Provisions–Part I: Beams and Slabs.” Structural Concrete 14 (3): 195–203. https://doi.org/10.1002/suco.201200066.
  • Simwanda, L. 2022. “Structural Reliability of Ultra‐High‐Performance Fiber Reinforced Concrete Beams in Shear.” Structural Concrete 24 (2): 2862–2878. https://doi.org/10.1002/suco.202200342.
  • Simwanda, L., N. De Koker, and C. Viljoen. 2021. “Structural Reliability of Ultra High-Performance Fibre Reinforced Concrete Beams in Flexure.” Engineering Structures 244:112767. https://doi.org/10.1016/j.engstruct.2021.112767.
  • Słowik, M., and T. Nowicki. 2012. “The Analysis of Diagonal Crack Propagation in Concrete Beams.” Computational Materials Science 52 (1): 261–267. https://doi.org/10.1016/j.commatsci.2011.02.012.
  • Standard, B. 1986. Structural Use of Concrete. BS8110: British Standard Institution (BSI).
  • Standard, B. 2002. “Eurocode—Basis of structural design.” Eurocode.
  • Standard, B. 2004. “Eurocode 2: Design of concrete structures—. Part.” 1 (1): 230.
  • Standard, S. A. N. 2000. SANS 10100-1: 2000. The Structural Use of Concrete, Part 1: Design. Pretoria: SABS Standards Division.
  • Sýkora, M., V. Červenka, and M. Holický. 2012. “Assessment of Model Uncertainties in the Analysis of Reinforced Concrete Structures.” In Proceedings of the 18th International Conference of Engineering Mechanics, 14–17 May 2012, Svratka, Czech Republic, 1263–1272.
  • Sykora, M., M. Holicky, M. Prieto, and P. Tanner. 2015. “Uncertainties in Resistance Models for Sound and Corrosion-Damaged RC Structures According to EN 1992-1-1.” Materials and Structures 48 (10): 3415–3430. https://doi.org/10.1617/s11527-014-0409-1.
  • Taerwe, L., Towards a Consistent Treatment of Model Uncertainties in Reliability Formats for Concrete Sfuctures. CEB Bulletin d’Information n° 219‘Safety and Performance Concepts’, September 1993, Lausanne, pp. 5–61.
  • Tran, N. L. 2020. “A Mechanical Model for the Shear Capacity of Slender Reinforced Concrete Members without Shear Reinforcement.” Engineering Structures 219:110803. https://doi.org/10.1016/j.engstruct.2020.110803.
  • Tran, N. L. and C.-A. Graubner. 2018. Uncertainties of Concrete Parameters in Shear Capacity Calculation of RC Members without Shear Reinforcement. In Proceedings of the 16th International Probabilistic Workshop, Vienna, Austria.
  • Uusitalo, L., A. Lehikoinen, I. Helle, and K. Myrberg. 2015. “An Overview of Methods to Evaluate Uncertainty of Deterministic Models in Decision Support.” Environmental Modelling & Software 63:24–31. https://doi.org/10.1016/j.envsoft.2014.09.017.
  • Vrouwenvelder, T. 2001. “The JCSS probabilistic model code.” Structural Safety 19 (3): 245–251. https://doi.org/10.1016/S0167-4730(97)00008-8.
  • Walker, W. E. Harremoës, P, Rotmans, J, Van Der Sluijs, JP, Van Asselt, MB, Janssen, P, Krayer von Krauss, MP. 2003. “Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support.” Integrated Assessment 4 (1): 5–17.
  • Yerzhanov, M., H. Ju, D. Zhang, S.-W. Moon, J. Kim, and D. Lee. 2019. “Shear Strength Model of Reinforced Concrete Beams without Stirrup Used in the CIS Countries.” Journal of Structural Integrity & Maintenance 4 (1): 15–25. https://doi.org/10.1080/24705314.2019.1565056.
  • Zararis, P. D. 2003. “Shear Strength and Minimum Shear Reinforcement of Reinforced Concrete Slender Beams.” Structural Journal 100 (2): 203–214.
  • Zhang, T., P. Visintin, and D. J. Oehlers. 2016. “Shear Strength of RC Beams without Web Reinforcement.” Australian Journal of Structural Engineering 17 (1): 87–96. https://doi.org/10.1080/13287982.2015.1122502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.