356
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical study on moving downburst with inclusion of the environmental wind

ORCID Icon
Pages 251-265 | Received 12 Sep 2020, Accepted 13 Jan 2024, Published online: 22 Jan 2024

References

  • Aboshosha, H., G. Bitsuamlak, and A. EL Damatty. 2015. “Turbulence Characterization of Downbursts Using LES.” Journal of Wind Engineering & Industrial Aerodynamics 136:44–61. https://doi.org/10.1016/j.jweia.2014.10.020.
  • Asano, K., Y. Iida, and Y. Uematsu. 2019. “Laboratory Study of Wind Loads on a Low-Rise Building in a Downburst Using a Moving Pulsed Jet Simulator and Their Comparison with Other Types of Simulators.” Journal of Wind Engineering & Industrial Aerodynamics 184:313–320. https://doi.org/10.1016/j.jweia.2018.11.034.
  • Bae, H. J., A. Lozano-Durán, S. T. Bose, and P. Moin. 2019. “Dynamic Slip Wall Model for Large-Eddy Simulation.” Journal of Fluid Mechanics 859:400–432. https://doi.org/10.1017/jfm.2018.838.
  • Blocken, B., T. Stathopoulos, and J. Carmeliet. 2007. “CFD Simulation of the Atmospheric Boundary Layer: Wall Function Problems.” Atmospheric Environment 41 (2): 238–252. https://doi.org/10.1016/j.atmosenv.2006.08.019.
  • Bose, S. T., and G. I. Park. 2018. “Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows.” Annual Review of Fluid Mechanics 50 (1): 535–561. https://doi.org/10.1146/annurev-fluid-122316-045241.
  • Burlando, M., D. Romanić, G. Solari, H. Hangan, and S. Zhang. 2017. “Field Data Analysis and Weather Scenario of a Downburst Event in Livorno, Italy, on 1 October 2012.” Monthly Weather Review 145 (9): 3507–3527. https://doi.org/10.1175/MWR-D-17-0018.1.
  • Chay, M., and F. Albermani. 2005. “A Review of Downburst Wind Models for Dynamic Analysis of Lattice Structures.” In 18th Australasian Conference on the Mechanics of Structures and Materials (ACMSM 18), Sydney, AA Balkema, 353–358.
  • Choi, E. C. 2004. “Field Measurement and Experimental Study of Wind Speed Profile During Thunderstorms.” Journal of Wind Engineering & Industrial Aerodynamics 92 (3–4): 275–290. https://doi.org/10.1016/j.jweia.2003.12.001.
  • Cui, W., Z. Xiao, and X. Yuan. 2020. “Simulations of Transition and Separation Past a Wind-Turbine Airfoil Near Stall.” Energy 205:118003. https://doi.org/10.1016/j.energy.2020.118003.
  • Demarco, G., N. Barrere, G. Sarasúa, A. Marti, O. Acevedo, E. Nascimento, and C. Cabeza. 2013. “Combined Effect of Jet Impingement and Density Perturbation Forcing on the Evolution of Laboratory-Simulated Microbursts.” Journal of Wind Engineering & Industrial Aerodynamics 123:69–76. https://doi.org/10.1016/j.jweia.2013.08.003.
  • Didden, N., and C.-M. Ho. 1985. “Unsteady Separation in a Boundary Layer Produced by an Impinging Jet.” Journal of Fluid Mechanics 160:235–256. https://doi.org/10.1017/S0022112085003469.
  • Fujita, T. 1985. “The Downburst, Microburst and Macroburst, Satellite and Mesometereology Research (Smrp).” Department of Geophysical Science 36: 75–86. http://hdl.handle.net/10605/262010.
  • Fujita, T. T. 1981. “Tornadoes and Downbursts in the Context of Generalized Planetary Scales.” Journal of the Atmospheric Sciences 38 (8): 1511–1534. https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.
  • Fujita, T. T. 1983. Andrews AFB Microburst. Chicago: University of Chicago. http://hdl.handle.net/10605/262003.
  • Gant, S. E. 2010. “Reliability Issues of LES-Related Approaches in an Industrial Context.” Flow Turbulence & Combustion 84 (2): 325–335. https://doi.org/10.1007/s10494-009-9237-8.
  • Gao, N., H. Sun, and D. Ewing. 2003. “Heat Transfer to Impinging Round Jets with Triangular Tabs.” International Journal of Heat and Mass Transfer 46 (14): 2557–2569. https://doi.org/10.1016/S0017-9310(03)00034-6.
  • Hall, J., and D. Ewing. 2006. “On the Dynamics of the Large-Scale Structures in Round Impinging Jets.” Journal of Fluid Mechanics 555:439–458. https://doi.org/10.1017/S0022112006009323.
  • Han, X., P. Yu, J. Bai, J. Zhou, and X. Song. 2020. “Hybrid Computational Aeroacoustics Approach Based on the Synthetic Turbulence Model in Eulerian Description.” Aerospace Science and Technology 106:106077. https://doi.org/10.1016/j.ast.2020.106077.
  • Hedges, L., A. Travin, and P. Spalart. 2002. “Detached-Eddy Simulations Over a Simplified Landing Gear.” Journal of Fluids Engineering 124 (2): 413–423. https://doi.org/10.1115/1.1471532.
  • Hjelmfelt, M. R. 1988. “Structure and Life Cycle of Microburst Outflows Observed in Colorado.” Journal of Applied Meteorology 27 (8): 900–927. https://doi.org/10.1175/1520-0450(1988)027<0900:SALCOM>2.0.CO;2.
  • Iida, Y., and Y. Uematsu. 2019. “Numerical Study of Wind Loads on Buildings Induced by Downbursts.” Journal of Wind Engineering & Industrial Aerodynamics 191:103–116. https://doi.org/10.1016/j.jweia.2019.05.018.
  • Iida, Y., Y. Uematsu, and E. Gavanski. 2015. “A Study of Downburst-Induced Wind Loading on Buildings.” Journal of Wind Engineering 40 (2): 40–49. https://doi.org/10.5359/jwe.40.40.
  • Jesson, M., M. Sterling, C. Letchford, and M. Haines. 2015. “Aerodynamic Forces on Generic Buildings Subject to Transient, Downburst-Type Winds.” Journal of Wind Engineering & Industrial Aerodynamics 137:58–68. https://doi.org/10.1016/j.jweia.2014.12.003.
  • Jin, Y., F. Liao, J. Cai, and P. J. Morris. 2020. “Investigation on Rod-Airfoil Noise with High-Order Cell-Centered Finite Difference Method and Acoustic Analogy.” Aerospace Science and Technology 102:105851. https://doi.org/10.1016/j.ast.2020.105851.
  • Kim, J., and H. Hangan. 2007. “Numerical Simulations of Impinging Jets with Application to Downbursts.” Journal of Wind Engineering & Industrial Aerodynamics 95 (4): 279–298. https://doi.org/10.1016/j.jweia.2006.07.002.
  • Letchford, C., and M. Chay. 2002. “Pressure Distributions on a Cube in a Simulated Thunderstorm Downburst. Part B: Moving Downburst Observations.” Journal of Wind Engineering & Industrial Aerodynamics 90 (7): 733–753. https://doi.org/10.1016/S0167-6105(02)00163-0.
  • Li, C., Q. Li, Y. Xiao, and J. Ou. 2012. “A Revised Empirical Model and CFD Simulations for 3D Axisymmetric Steady-State Flows of Downbursts and Impinging Jets.” Journal of Wind Engineering & Industrial Aerodynamics 102:48–60. https://doi.org/10.1016/j.jweia.2011.12.004.
  • Liu, K., Y. Wang, W.-P. Song, and Z.-H. Han. 2020. “A Two-Equation Local-Correlation-Based Laminar-Turbulent Transition Modeling Scheme for External Aerodynamics.” Aerospace Science and Technology 106:106128. https://doi.org/10.1016/j.ast.2020.106128.
  • Mason, M. S., D. Fletcher, and G. Wood. 2010. “Numerical Simulation of Idealised Three-Dimensional Downburst Wind Fields.” Engineering Structures 32 (11): 3558–3570. https://doi.org/10.1016/j.engstruct.2010.07.024.
  • Mason, M. S., G. S. Wood, and D. F. Fletcher. 2009. “Numerical Simulation of Downburst Winds.” Journal of Wind Engineering & Industrial Aerodynamics 97 (11–12): 523–539. https://doi.org/10.1016/j.jweia.2009.07.010.
  • Nikitin, N., F. Nicoud, B. Wasistho, K. Squires, and P. R. Spalart. 2000. “An Approach to Wall Modeling in Large-Eddy Simulations.” Physics of Fluids 12 (7): 1629–1632. https://doi.org/10.1063/1.870414.
  • Orf, L. G., and J. R. Anderson. 1999. “A numerical study of traveling microbursts.” Monthly Weather Review 127 (6): 1244–1258. https://doi.org/10.1175/1520-0493(1999)127<1244:ANSOTM>2.0.CO;2.
  • Orf, L. G., C. Oreskovic, E. Savory, and E. Kantor. 2014. “Circumferential Analysis of a Simulated Three-Dimensional Downburst-Producing Thunderstorm Outflow.” Journal of Wind Engineering & Industrial Aerodynamics 135:182–190. https://doi.org/10.1016/j.jweia.2014.07.004.
  • Pas, S. 2016. “The Influence of Y+ in Wall Functions Applied in Ship Viscous Flows.”
  • Philippe, R. 2001. “Young-Person’‘s Guide to Detached-Eddy Simulation Grids.”
  • Poreh, M., Y. Tsuei, and J. E. Cermak. 1967. “Investigation of a Turbulent Radial Wall Jet.” Journal of Applied Mechanics 34 (2): 457–463. https://doi.org/10.1115/1.3607705.
  • Prandtl, L. 1925. “7. Bericht über Untersuchungen zur ausgebildeten Turbulenz.” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 5 (2): 136–139. https://doi.org/10.1002/zamm.19250050212.
  • Reinoso, E., M. Niño, E. Berny, and I. Inzunza. 2020. “Wind Risk Assessment of Electric Power Lines Due to Hurricane Hazard.” Natural Hazards Review 21 (2): 04020010. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000363.
  • Sengupta, A. 2007. Study of Microburst-Induced Wind Flow and Its Effects on Cube-Shaped Buildings Using Numerical and Experimental Simulations of an Impinging Jet. Ames, IA, USA: Iowa State University.
  • Sengupta, A., and P. P. Sarkar. 2008. “Experimental Measurement and Numerical Simulation of an Impinging Jet with Application to Thunderstorm Microburst Winds.” Journal of Wind Engineering & Industrial Aerodynamics 96 (3): 345–365. https://doi.org/10.1016/j.jweia.2007.09.001.
  • Shi, W., J. LI, H. Gao, H. Zhang, Z. Yang, and Y. Jiang. 2020. “Numerical Investigations on Drag Reduction of a Civil Light Helicopter Fuselage.” Aerospace Science and Technology 106:106104. https://doi.org/10.1016/j.ast.2020.106104.
  • Standards Australia, N. 2016. Structural Design Actions.Part2: Wind Actions, Standards Australia/Standards NewZealand. AS/NZS1170.2: 2011 (R2016). Sydney: standards Australia.
  • Sun, H. 2002. The effect of initial conditions on the development of the three-dimensional wall jet. Ph. D. thesis, McMaster University, Hamilton, ON, Canada.
  • Vermeire, B. C., L. G. Orf, and E. Savory. 2011. “Improved Modelling of Downburst Outflows for Wind Engineering Applications Using a Cooling Source Approach.” Journal of Wind Engineering & Industrial Aerodynamics 99 (8): 801–814. https://doi.org/10.1016/j.jweia.2011.03.003.
  • Wang, L. 1998. “Self-Similarity of Fluid Flows.” Applied Physics Letters 73 (10): 1329–1330. https://doi.org/10.1063/1.121885.
  • Wang, G., Z. Xiao, and L. Chen. 2020. “Simultaneous Simulation of Transition and Massive Separation by RANS-LES-Tr Model.” Aerospace Science and Technology 105:106026. https://doi.org/10.1016/j.ast.2020.106026.
  • Wolfson, M. M., J. T. Distefano, and T. T. Fujita. 1984. Low-Altitude Wind Shear Characteristics in the Memphis, TN Area Based on Mesonet and LLWAS Data. Chicago, IL, USA: Department of Geophysical Sciences, University of Chicago.
  • Wood, G. S., K. C. Kwok, N. A. Motteram, and D. F. Fletcher. 2001. “Physical and Numerical Modelling of Thunderstorm Downbursts.” Journal of Wind Engineering & Industrial Aerodynamics 89 (6): 535–552. https://doi.org/10.1016/S0167-6105(00)00090-8.
  • Yeo, D., and L. Shi. 2018. “Computational versus Wind Tunnel Simulation of Atmospheric Boundary Layer Flow for Structural Engineering Applications.” In Wind Engineering for Natural Hazards: Modeling, Simulation, and Mitigation of Windstorm Impact on Critical Infrastructure, 169–191. https://doi.org/10.1061/9780784415153.ch09.
  • Zhang, Y., H. Hu, and P. P. Sarkar. 2013. “Modeling of Microburst Outflows Using Impinging Jet and Cooling Source Approaches and Their Comparison.” Engineering Structures 56:779–793. https://doi.org/10.1016/j.engstruct.2013.06.003.