549
Views
1
CrossRef citations to date
0
Altmetric
Agronomy & Crop Ecology

Improving efficiency of ground-truth data collection for UAV-based rice growth estimation models: investigating the effect of sampling size on model accuracy

, &
Pages 1-13 | Received 02 Oct 2023, Accepted 25 Nov 2023, Published online: 04 Jan 2024

References

  • Adamchuk, V. I., Ferguson, R. B., & Hergert, G. W. (2010). Soil heterogeneity and crop growth. In Precision crop protection—the challenge and use of heterogeneity (pp. 3–16). Springer Netherlands. https://doi.org/10.1007/978-90-481-9277-9_1
  • Bascon, M. V., Nakata, T., Shibata, S., Takata, I., Kobayashi, N., Kato, Y., Inoue, S., Doi, K., Murase, J., & Nishiuchi, S. (2022). Estimating yield-related traits using UAV-Derived multispectral images to improve rice grain yield prediction. Agriculture, 12(8), 1141. 12(8. https://doi.org/10.3390/agriculture12081141
  • Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., Gnyp, M. L., & Bareth, G. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 39, 79–87. https://doi.org/10.1016/j.jag.2015.02.012
  • Broge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2), 156–172. https://doi.org/10.1016/S0034-4257(00)00197-8
  • Budach, L., Feuerpfeil, M., Ihde, N., Nathansen, A., Noack, N., Patzlaff, H., Naumann, F., & Harmouch, H. (2022). The effects of data quality on machine learning performance. arXiv preprint arXiv:2207.14529. https://doi.org/10.48550/arXiv.2207.14529
  • Buschman, C., & Nagel, E. (1993). In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. International Journal of Remote Sensing, 14(4), 711–722. https://doi.org/10.1080/01431169308904370
  • Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3), 229–242. https://doi.org/10.1080/07038992.1996.10855178
  • Chen, H., Chen, J., & Ding, J. (2021). Data evaluation and enhancement for quality improvement of machine learning. IEEE Transactions on Reliability, 70(2), 831–847. https://doi.org/10.1109/TR.2021.3070863
  • Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7, 1–30. https://dl.acm.org/doi/10.5555/1248547.1248548
  • Dobermann, A., Pampolino, M. F., & Neue, H. U. (1995). Spatial and temporal variability of transplanted rice at the field scale. Agronomy Journal, 87(4), 712–720. https://doi.org/10.2134/agronj1995.00021962008700040018x
  • Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76–87. https://doi.org/10.1016/S0034-4257(01)00289-9
  • Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352. https://doi.org/10.1016/j.rse.2003.12.013
  • Hague, T., Tillett, N. D., & Wheeler, H. (2006). Automated crop and weed monitoring in widely spaced cereals. Precision Agriculture, 7(1), 21–32. https://doi.org/10.1007/S11119-005-6787-1/FIGURES/7
  • Han, L., Yang, G., Dai, H., Xu, B., Yang, H., Feng, H., Li, Z., & Yang, X. (2019). Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods, 15(1), 10. https://doi.org/10.1186/s13007-019-0394-z
  • Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X
  • Huete, A., Justice, C., & Liu, H. (1994). Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment, 49(3), 224–234. https://doi.org/10.1016/0034-4257(94)90018-3
  • Jordan, C. F. (1969). Derivation of Leaf-Area Index from quality of light on the forest floor. Ecology, 50(4), 663–666. https://doi.org/10.2307/1936256
  • Kim, M. S., Daughtry, C. S. T., Chappelle, E. W., McMurtrey, J. E., & Walthall, C. L. (1994, January). The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (A par). In CNES, proceedings of 6th international symposium on physical measurements and signatures in remote sensing (No. GSFC-E-DAA-TN72921), France. https://ntrs.nasa.gov/citations/19950010604
  • Liu, X., Jin, J., Herbert, S. J., Zhang, Q., & Wang, G. (2005). Yield components, dry matter, LAI and LAD of soybeans in Northeast China. Field Crops Research, 93(1), 85–93. https://doi.org/10.1016/j.fcr.2004.09.005
  • Li, S., Yuan, F., Ata-UI-Karim, S. T., Zheng, H., Cheng, T., Liu, X., Tian, Y., Zhu, Y., Cao, W., & Cao, Q. (2019). Combining color indices and textures of UAV-Based digital imagery for rice LAI estimation. Remote Sensing, 11(15), 1763. https://doi.org/10.3390/rs11151763
  • Louhaichi, M., Borman, M. M., & Johnson, D. E. (2001). Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, 16(1), 65–70. https://doi.org/10.1080/10106040108542184
  • Lu, D., & Batistella, M. (2005). Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon. Acta Amazonica, 35(2), 249–257. https://doi.org/10.1590/S0044-59672005000200015
  • Ma, J., Li, Y., Liu, H., Wu, Y., & Zhang, L. (2022). Towards improved accuracy of UAV-based wheat ears counting: A transfer learning method of the ground-based fully convolutional network. Expert Systems with Applications, 191, 116226. https://doi.org/10.1016/j.eswa.2021.116226
  • Nemenyi, P. B. (1963). Distribution-free multiple comparisons. Princeton University.
  • Peprah, C. O., Yamashita, M., Yamaguchi, T., Sekino, R., Takano, K., & Katsura, K. (2021). Spatio-temporal estimation of biomass growth in rice using canopy surface Model from unmanned aerial vehicle images. Remote Sensing, 13(12), 2388. https://doi.org/10.3390/rs13122388
  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107. https://doi.org/10.1016/0034-4257(95)00186-7
  • Rouse, J. W., Hass, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the great plains with ERTS. Third Earth Resources Technology Satellite (ERTS) Symposium, 1, 309–317. citeulike-article-id:12009708
  • Silleos, N. G., Alexandridis, T. K., Gitas, I. Z. & Perakis, K. (2006). Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 Years. Geocarto International, 21(4), 21–28. https://doi.org/10.1080/10106040608542399
  • Tang, S., Zhu, Q., Wang, J., Zhou, Y., & Zhao, F. (2005). Principle and application of three-band gradient difference vegetation index. Science in China Series D: Earth Sciences, 48(2), 241–249. https://doi.org/10.1360/02yd0527
  • Tanre, D., Holben, B. N., & Kaufman, Y. J. (1992). Atmospheric correction against algorithm for NOAA-AVHRR products: Theory and application. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 231–248. https://doi.org/10.1109/36.134074
  • Tilly, N., Hoffmeister, D., Cao, Q., Huang, S., Lenz-Wiedemann, V., Miao, Y., & Bareth, G. (2014). Multitemporal crop surface models: Accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice. Journal of Applied Remote Sensing, 8(1), 083671. https://doi.org/10.1117/1.jrs.8.083671
  • Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on UAV-Based applications for precision agriculture. Information, 10(11), 349. https://doi.org/10.3390/info10110349
  • Wulder, M. A., LeDrew, E. F., Franklin, S. E., & Lavigne, M. B. (1998). Aerial image texture information in the estimation of northern deciduous and mixed wood forest leaf area index (LAI). Remote Sensing of Environment, 64(1), 64–76. https://doi.org/10.1016/S0034-4257(97)00169-7
  • Xiao, Z., Liang, S., Wang, J., Jiang, B., & Li, X. (2011). Real-time retrieval of Leaf Area Index from MODIS time series data. Remote Sensing of Environment, 115(1), 97–106. https://doi.org/10.1016/j.rse.2010.08.009
  • Xu, T., Wang, F., Xie, L., Yao, X., Zheng, J., Li, J., & Chen, S. (2022). Integrating the textural and spectral information of UAV hyperspectral images for the improved estimation of rice aboveground biomass. Remote Sensing, 14(11), 2534. https://doi.org/10.3390/rs14112534
  • Yamaguchi, T., Sasano, K., & Katsura, K. (2023). Improving efficiency of ground-truth data collection for UAV-based Rice growth estimation models: Investigating the effect of sampling size on model accuracy. Research Square. PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-2615932/v1
  • Yamaguchi, T., Tanaka, Y., Imachi, Y., Yamashita, M., & Katsura, K. (2020). Feasibility of combining deep learning and RGB images obtained by unmanned aerial vehicle for leaf area index estimation in rice. Remote Sensing, 13(1), 84. https://doi.org/10.3390/rs13010084
  • Yoshida, H., Horie, T., Katsura, K., & Shiraiwa, T. (2007). A model explaining genotypic and environmental variation in leaf area development of rice based on biomass growth and leaf N accumulation. Field Crops Research, 102(3), 228–238. https://doi.org/10.1016/j.fcr.2007.04.006
  • Yue, J., Yang, H., Yang, G., Fu, Y., Wang, H., & Zhou, C. (2023). Estimating vertically growing crop above-ground biomass based on UAV remote sensing. Computers and Electronics in Agriculture, 205, 107627. https://doi.org/10.1016/j.compag.2023.107627
  • Zheng, H., Cheng, T., Zhou, M., Li, D., Yao, X., Tian, Y.,… Zhu, Y. (2019). Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery. Precision Agriculture, 20(3), 611–629. https://doi.org/10.1007/s11119-018-9600-7