330
Views
0
CrossRef citations to date
0
Altmetric
Genetic Resources Evaluation

Genotypic variations in phosphorus accumulation in wild cowpea relatives (Vigna vexillata) grown under phosphorus deficiency

, ORCID Icon, & ORCID Icon
Pages 28-37 | Received 29 Nov 2022, Accepted 25 Nov 2023, Published online: 04 Jan 2024

References

  • Ågren, G. I. (2008). Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology, Evolution, and Systematics, 39(1), 153–170. https://doi.org/10.1146/annurev.ecolsys.39.110707.173515
  • Alcántara, C., S, S., Pujadas, A., & Saavedra, M. (2009). Brassica species as winter cover crops in sustainable agricultural systems in Southern Spain. Journal of Sustainable Agriculture, 33(6), 619–635. https://doi.org/10.1080/10440040903073693
  • Bista, D. R., Heckathorn, S. A., Jayawardena, D. M., Mishra, S., & Boldt, J. K. (2018). Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and -tolerant grasses. Plants, 7(2), 28. https://doi.org/10.3390/plants7020028
  • Brown, C. E., Pezeshki, S. R., & DeLaune, R. D. (2006). The effects of salinity and soil drying on nutrient uptake and growth of Spartina alterniflora in a simulated tidal system. Environmental and Experimental Botany, 58, 140–148. https://doi.org/10.1016/j.envexpbot.2005.07.006
  • Essigmann, B., Güler, S., Narang, R. A., Linke, D., & Benning, C. (1998). Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 95, 1950–1955. https://doi.org/10.1073/pnas.95.4.1950.
  • FAO/UNESCO. (n.d.) Soil map of the world. Retrieved October 25, 2023, from https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
  • Gilroy, S., & Jones, D. L. (2000). Through form to function: Root hair development and nutrient uptake. Trends in Plant Science, 5, 56–60. https://doi.org/10.1016/S1360-1385(99)01551-4
  • Güsewell, S., & Koerselman, W. (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 5(1), 37–61. https://doi.org/10.1078/1433-8319-0000022
  • Hill, N. S., Levi, M., Basinger, N., Thompson, A., Cabrera, M., Wallace, J., Saikawa, E., Avramov, A., & Mullican, J. (2021). White clover living mulch enhances soil health vs. annual cover crops. Agronomy Journal, 113(4), 3697–3707. https://doi.org/10.1002/agj2.20768
  • Iseki, K., Ikazaki, K., & Batieno, B. J. (2021). Cowpea yield variation in three dominant soil types in the Sudan Savanna of West Africa. Field Crops Research, 261, 108012. https://doi.org/10.1016/j.fcr.2020.108012
  • Iseki, K., Takahashi, Y., Muto, C., Naito, K., & Tomooka, N. (2018). Diversity of drought tolerance in the genus Vigna. Frontiers in Plant Science, 9, 729. https://doi.org/10.3389/fpls.2018.00729
  • Iseki, K., Takahashi, Y., Muto, C., Naito, K., Tomooka, N., & Mondal, T. K. (2016). Diversity and evolution of salt tolerance in the genus Vigna. Plos One, 11(10), e0164711. https://doi.org/10.1371/journal.pone.0164711
  • Krishnapriya, V., & Pandey, R. (2016). Root exudation index: Screening organic acid exudation and phosphorus acquisition efficiency in soybean genotypes. Crop and Pasture Science, 67, 1096–1109. https://doi.org/10.1071/CP15329
  • Lawn, R. J., & Watkinson, R. (2002). Habitats, morphological diversity, and distribution of the genus Vigna Savi in Australia. Australian Journal of Agricultural Research, 53, 1305–1316. https://doi.org/10.1071/AR02065
  • Li, X., Yu, B., Wu, Q., Min, Q., Zeng, R., Xie, Z., Huang, J., & Copenhaver, G. P. (2021). OsMADS23 phosphorylated by SAPK9 confers drought and salt tolerance by regulating ABA biosynthesis in rice. PLOS Genetics, 17(8), e1009699. https://doi.org/10.1371/journal.pgen.1009699
  • Lynch, J. P., & Brown, K. M. (2001). Topsoil foraging–an architectural adaptation of plants to low phosphorus. Plant and Soil, 237, 225–237. https://doi.org/10.1023/A:1013324727040
  • Nziguheba, G., Zingore, S., Kihara, J., Merckx, R., Njoroge, S., Otinga, A., Vandamme, E., & Vanlauwe, B. (2015). Phosphorus in smallholder farming systems of sub-saharan Africa: Implications for agricultural intensification. Nutrient Cycling in Agroecosystems, 104(3), 321–340. https://doi.org/10.1007/s10705-015-9729-y
  • Oo, A. Z., Tsujimoto, Y., Mukai, M., Nishigaki, T., Takai, T., & Uga, Y. (2021). Synergy between a shallow root system with a DRO1 homologue and localized P application improves P uptake of lowland rice. Scientific Reports, 11, 9484. https://doi.org/10.1038/s41598-021-89129-z
  • Plaxton, W. C., & Carswell, M. C. (1999). Metabolic aspects of the phosphate starvation response in plants. In H. R. Lerner (Ed.), Plant responses to environmental stresses: From Phytohormones to genome reorganization: From Phytohormones to genome reorganization (pp. Chapter16). Routledge.
  • Poorter, H., & Remkes, C. (1990). Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia, 83(4), 553–559. https://doi.org/10.1007/BF00317209
  • Shi, Q., Pang, J., Yong, J. W. H., Bai, C., Pereira, C. G., Song, Q., Wu, D., Dong, Q., Cheng, X., Wang, F., Zheng, J., Liu, Y., & Lambers, H. (2020). Phosphorus-fertilisation has differential effects on leaf growth and photosynthetic capacity of Arachis hypogaea L. Plant and Soil, 447, 99–116. https://doi.org/10.1007/s11104-019-04041-w
  • Takahashi, Y., Iseki, K., Kitazawa, K., Muto, C., Somta, P., Irie, K., Naito, K., & Tomooka, N. (2015). A homoploid hybrid between wild vigna species found in a limestone karst. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.01050
  • Tomooka, N., Kaga, A., Isemura, T., & Vaughan, D. (2011). Vigna. In C. Kole (Ed.), Wild crop relatives: Genomic and breeding resources: Crops and forages legume (pp. 291–311). Springer. https://doi.org/10.1007/978-3-642-14387-8_15
  • Tribouillois, H., Fort, F., Cruz, P., Charles, R., Flores, O., Garnier, E., Justes, E., & DaMatta, F. M. (2015). A functional characterisation of a wide range of cover crop species: Growth and nitrogen acquisition rates, leaf traits and ecological strategies. Plos One, 10(3), e0122156. https://doi.org/10.1371/journal.pone.0122156
  • Vance, C. P., Uhde Stone, C., & Allan, D. (2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423–447. https://doi.org/10.1046/j.1469-8137.2003.00695.x
  • Wang, L., Bai, X., Qiao, Y., Si, L., Yu, Z., Ni, C., Li, T., Guo, C., & Xiao, K. (2023). Tae-miR9674a, a microRNA member of wheat, confers plant drought and salt tolerance through modulating the stomata movement and ROS homeostasis. Plant Biotechnology Reports, 17(4), 471–488. https://doi.org/10.1007/s11816-022-00787-5
  • Zhang, K., Liu, H., Tao, P., Chen, H., & Beemster, G. T. (2014). Comparative proteomic analyses provide new insights into low phosphorus stress responses in maize leaves. PLoS One, 9(5), e98215. https://doi.org/10.1371/journal.pone.0098215