214
Views
0
CrossRef citations to date
0
Altmetric
Crop Physiology

Solute contributions to osmotic adjustment in leaf segments of wheat (Triticum aestivum L.) exposed to polyethylene glycol-induced water deficit

, , & ORCID Icon
Pages 99-109 | Received 15 Jan 2023, Accepted 27 Nov 2023, Published online: 18 Jan 2024

References

  • Arndt, S. K., Clifford, C., Wanek, W., Jones, H. G., & Popp, M. (2001). Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. Tree Physiology, 21(11), 705–715. https://doi.org/10.1093/treephys/21.11.705
  • Ashraf, M., & Fooland, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Blum, A. (1988). Plant breeding for stress environments. CRC Press.
  • Blum, A. (1998). Use of PEG to induce and control plant water deficit in experimental hydroponics’ culture. Retrieved October 8, 2022, from http://plantstress.com/use-of-peg/.
  • Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stresses. The Plant Cell, 7(7), 1099–1111. https://doi.org/10.2307/3870060
  • Boyer, J. S., James, R. A., Munns, R., & Condon, A. G. (2008). Osmotic adjustment leads to anomalously low estimates of relative water content in wheat and barley. Functional Plant Biology, 35(11), 1171–1182. https://doi.org/10.1071/FP08157
  • Bressan, R. A., Hasegawa, P. M., & Handa, A. K. (1981). Resistance of cultured higher plant cells to polyethylene glycol-induced water stress. Plant Science Letters, 21(1), 23–30. https://doi.org/10.1016/0304-4211(81)90065-1
  • Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought — from genes to the whole plant. Functional Plant Biology, 30(3), 239–264. https://doi.org/10.1071/FP02076
  • Crawford, N. M., & Glass, A. D. M. (1998). Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, 3(10), 389–395. https://doi.org/10.1016/S1360-1385(98)01311-9
  • Epstein, E., Rains, D. W., & Elzam, O. E. (1963). Resolution of dual mechanisms of potassium absorption by barley roots. Proceedings of the National Academy of Sciences 49, 684–692.
  • Fan, T. W. M., Colmer, T. D., Lane, A. N., & Higashi, R. M. (1993). Determination of metabolites by 1H-NMR and GC: Analysis for organic osmolytes in crude tissue extracts. Analytical Biochemistry, 214(1), 260–271. https://doi.org/10.1006/abio.1993.1486
  • Ford, C. W., & Wilson, J. R. (1981). Changes in levels of solutes during osmotic adjustment to water stress in leaves of four tropical pasture species. Australian Journal of Plant Physiology, 8(1), 77–91. https://doi.org/10.1071/PP9810077
  • Glass, A. D. M. (1983). Regulation of ion transport. Annual Review of Plant Physiology, 34(1), 311–326. https://doi.org/10.1146/annurev.pp.34.060183.001523
  • Hsu, S. Y., & Kao, C. H. (2003). The protective effect of free radical scavengers and metal chelators on polyethylene glycol-treated rice leaves. Biologia Plantarum, 46(4), 617–619. https://doi.org/10.1023/A:1024888217021
  • Jackson, W. A., Kwik, K. D., Volk, R. J., & Butz, R. G. (1976). Nitrate influx and efflux by intact wheat seedlings: Effects on prior nitrate nutrition. Planta, 132(2), 149–156. https://doi.org/10.1007/BF00388896
  • Jones, M. M., Turner, N. C., & Osmond, C. B. (1981). Mechanisms of drought resistance. In L. G. Paleg & D. Aspinall (Eds.), The physiology and biochemistry of drought resistance in plants (pp. 15–37). Academic Press.
  • Kaufmann, M. R., & Eckard, A. N. (1971). Evaluation of water stress control with polyethylene glycol. Science, 133, 1486–1487.
  • Kocheva, K. V., Georgiev, G., & Vunkova-Radeva, V. (2007). Contribution of mineral nutrition to the response of barley seedlings to polyethylene glycol–induced mild water stress. Journal of Plant Nutrition and Soil Science, 170(3), 392–397. https://doi.org/10.1002/jpln.200625182
  • Lascano, H. R., Antonicelli, G. E., Luna, C. M., Melchiorre, M. N., Gómez, L. D., Racca, R. W., Trippi, V. S., & Casano, L. M. (2001). Antioxidant system response of different wheat cultivars under drought: Field and in vitro studies. Australian Journal of Plant Physiology, 28(11), 1095–1102. https://doi.org/10.1071/PP01061
  • McDonald, M. P., Galwey, N. W., & Colmer, T. D. (2001). Waterlogging tolerance in the tribe triticeae: The adventitious roots of critesion marinum have a relatively high porosity and a barrier to radial oxygen loss. Plant Cell and Environment, 24(6), 585–596. https://doi.org/10.1046/j.0016-8025.2001.00707.x
  • Mengel, K., & Kirby, E. A. (1979). Principles of plant nutrition (2nd ed.). International Potash Institute.
  • Morgan, J. M. (1984). Osmoregulation and water stress in higher plants. Annual Review of Plant Physiology, 35(1), 299–319. https://doi.org/10.1146/annurev.pp.35.060184.001503
  • Morgan, J. M. (1992). Osmotic components and properties associated with genotypic differences in osmoregulation in wheat. Australian Journal of Plant Physiology, 19(1), 67–76. https://doi.org/10.1071/PP9920067
  • Munns, R., Brady, C. J., & Barlow, E. W. R. (1979). Solute accumulation in the apex and leaves of wheat during water stress. Australian Journal of Plant Physiology, 6(3), 379–389. https://doi.org/10.1071/PP9790379
  • Munns, R., & Weir, R. (1981). Contribution of sugars to osmotic adjustment in elongating and expanded zones of wheat leaves during moderate water deficits at two light levels. Australian Journal of Plant Physiology, 8(1), 93–105. https://doi.org/10.1071/PP9810093
  • Naidu, B. P. (1998). Separation of sugars, polyols, proline analogues, and betaines in stressed plant extracts by high performance liquid chromatography and quantification by ultra violet detection. Australian Journal of Plant Physiology, 25(7), 793–800. https://doi.org/10.1071/PP97165
  • Naidu, B. P., Paleg, L. G., Aspinall, D., Jennings, A. C., & Jones, G. P. (1990). Rate of imposition of water stress alters the accumulation of nitrogen-containing solutes by wheat seedlings. Australian Journal of Plant Physiology, 17(6), 653–664. https://doi.org/10.1071/PP9900653
  • Nio, S. A., Cawthray, G. R., Wade, L. J., & Colmer, T. D. (2011). Patterns of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiology and Biochemistry, 49(10), 1126–1137. https://doi.org/10.1016/j.plaphy.2011.05.011
  • Nio, S. A., Ludong, D. P. M., & Wade, L. J. (2018). Comparison of leaf osmotic adjustment expression in wheat (Triticum aestivum L.) under water deficit between the whole plant and tissue levels. Agriculture and Natural Resources, 52(1), 33–38. https://doi.org/10.1016/j.anres.2018.03.003
  • Pugnaire, F. I., Serrano, L., & Pardos, J. (1999). Constraints by water stress on plant growth. In M. Passarakli (Ed.), Handbook of plant and crop stress (Vol. 2, pp. 271–283). Marcel Decker.
  • Rains, D. W., & Epstein, E. (1967). Sodium absorption by barley roots: Role of the dual mechanisms of alkali cation transport. Plant Physiology, 42(3), 314–318. https://doi.org/10.1104/pp.42.3.314
  • Riazi, A., Matsuda, K., & Arslan, A. (1985). Water-stress induced changes in concentrations of proline and other solutes in growing regions of young barley leaves. Journal of Experimental Botany, 36(11), 1716–1725. https://doi.org/10.1093/jxb/36.11.1716
  • Wang, R., & Crawford, N. M. (1996). Genetic identification of a gene involved in constitutive, high-affinity nitrate transport in higher plants. Proceedings of the National Academy of Sciences 93, 9297–9301.
  • Wilson, J. R., & Ludlow, M. M. (1983). Time trends of solute accumulation and the influence of potassium fertilizer on osmotic adjustment of water-stressed leaves of three tropical grasses. Australian Journal of Plant Physiology, 10(6), 523–537. https://doi.org/10.1071/PP9830523
  • Yambao, E. B., & O’Toole, J. C. (1984). Effects of nitrogen nutrition and root medium water potential on growth, nitrogen uptake and osmotic adjustment of rice. Physiologia Plantarum, 60(4), 507–515. https://doi.org/10.1111/j.1399-3054.1984.tb04919.x
  • Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemistry Journal, 57(3), 508–514. https://doi.org/10.1042/bj0570508
  • Zhang, J., Nguyen, A., & Blum, H. T. (1999). Genetic analysis of osmotic adjustment in crops. Journal of Experimental Botany, 50(332), 291–302. https://doi.org/10.1093/jxb/50.332.291