460
Views
0
CrossRef citations to date
0
Altmetric
Agronomy & Crop Ecology

Enhancing initial growth of transplanted rice under phosphorus deficiency: combined effects of tillering quantitative trait locus and P-dipping technique

ORCID Icon, &
Pages 78-84 | Received 30 May 2023, Accepted 28 Dec 2023, Published online: 31 Jan 2024

References

  • Andrianary, B. H., Tsujimoto, Y., Rakotonindrina, H., Oo, A. Z., Rabenarivo, M., Ramifehiarivo, N., & Razakamanarivo, H. (2021). Phosphorus application affects lowland rice yields by changing phenological development and cold stress degrees in the central highlands of Madagascar. Field Crops Research, 271, 108256. https://doi.org/10.1016/j.fcr.2021.108256
  • Bekunda, M., Sanginga, N., & Woomer, P. L. (2010). Chapter four - restoring soil fertility in sub-saharan africa. Advances in Agronomy, 54, 183–236. https://doi.org/10.1016/S0065-2113(10)08004-1
  • Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
  • Dobermann, A., & Fairhurst, T. (2000). Rice: Nutrient disorders and nutrient management. PPI, PPIC, and Los Baños. IRRI.
  • FAOSTAT. (2021). Food and agriculture organization of the United Nations, https://www.fao.org/faostat/en/#home.
  • Imbe, T., Akama, Y., Nakane, A., Hata, T., Ise, K., Ando, I., Uchiyama, H., Nakagawa, N., Furutachi, H., Horisue, N., Noto, M., Fujita, Y., Kimura, K., Mori, K., Takayanagi, K., Uehara, Y., Ishizaka, S., Nakagaura, M., Yamada, T., & Koga, Y. (2004). Development of a multipurpose high-yielding rice variety “takanari. Bulletin of the National Institute of Crop Science. 5, 35–51. in Japanese with English summary. https://www.naro.go.jp/publicity_report/publication/archive/files/5-3.pdf
  • Ismail, A. M., Heuer, S., Thomson, M. J., & Wissuwa, M. (2007). Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Molecular Biology, 65(4), 547–570. https://doi.org/10.1007/s11103-007-9215-2
  • Minakuchi, K., Kameoka, H., Yasuno, N., Umehara, M., Luo, L., Kobayashi, K., Hanada, A., Ueno, K., Asami, T., Yamaguchi, S., & Kyozuka, J. (2010). FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiology, 51(7), 1127–1135. https://doi.org/10.1093/pcp/pcq083
  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5
  • Nishigaki, T., Tsujimoto, Y., Rinasoa, S., Rakotoson, T., Andriamananjara, A., & Razafimbelo, T. (2019). Phosphorus uptake of rice plants is affected by phosphorus forms and physicochemical properties of tropical weathered soils. Plant and Soil, 435(1–2), 27–38. https://doi.org/10.1007/s11104-018-3869-1
  • Oo, A. Z., & Tsujimoto, Y. (2023). Localized phosphorus application via P-dipping is more effective for improving initial rice growth in lower temperature conditions. Plant Production Science, 26(1), 28–35. https://doi.org/10.1080/1343943X.2022.2160363
  • Oo, A. Z., Tsujimoto, Y., Mukai, M., Nishigaki, T., Takai, T., & Uga, Y. (2021). Synergy between a shallow root system with a DRO1 homologue and localized P application improves P uptake of lowland rice. Scientific Reports, 11(1), 9484. https://doi.org/10.1038/s41598-021-89129-z
  • Oo, A. Z., Tsujimoto, Y., & Rakotoarisoa, N. M. (2020). Optimizing the phosphorus concentration and duration of seedling dipping in soil slurry for accelerating the initial growth of transplanted rice. Agronomy, 10(2), 240. https://doi.org/10.3390/agronomy10020240
  • Oo, A. Z., Tsujimoto, Y., Rakotoarisoa, N. M., Kawamura, K., & Nishigaki, T. (2020). P-dipping of rice seedlings increases applied P use efficiency in high P-fixing soils. Scientific Reports, 10(1), 11919. https://doi.org/10.1038/s41598-020-68977-1
  • Rakotoarisoa, N. M., Tsujimoto, Y., & Oo, A. Z. (2020). Dipping rice seedlings in P-enriched slurry increases grain yield and shortens days to heading on P-deficient lowlands in the central highlands of Madagascar. Field Crops Research, 254, 107806. https://doi.org/10.1016/j.fcr.2020.107806
  • Rakotoson, T., Tsujimoto, Y., & Nishigaki, T. (2022). Phosphorus management strategies to increase lowland rice yields in sub-saharan Africa: A review. Field Crops Research, 275, 108370. https://doi.org/10.1016/j.fcr.2021.108370
  • Saito, K., Vandamme, E., Johnson, J., Tanaka, A., Senthilkumar, K., Dieng, I., Akakpo, C., Gbaguidi, F., Segda, Z., Bassoro, I., Lamare, D., Gbakatchetche, H., Abera, B. B., Jaiteh, F., Bam, R. K., Dogbe, W., Sékou, K., Rabeson, R. … Wopereis, M. C. S. (2019). Yield-limiting macronutrients for rice in sub-Saharan Africa. Geoderma, 338, 546–554. https://doi.org/10.1016/j.geoderma.2018.11.036
  • Takai, T., Ikka, T., Kondo, K., Nonoue, Y., Ono, N., Arai-Sanoh, Y., Yoshinaga, S., Nakano, H., Yano, M., Kondo, M., & Yamamoto, T. (2014). Genetic mechanisms underlying yield potential in the rice high-yielding cultivar Takanari, based on reciprocal chromosome segment substitution lines. BMC Plant Biology, 14(1), 295. https://doi.org/10.1186/s12870-014-0295-2
  • Takai, T., Sakata, M., Rakotoarisoa, N. M., Razafinarivo, N. T., Nishigaki, T., Asai, H., Ishizaki, T., & Tsujimoto, Y. (2021). Effects of quantitative trait locus MP3 on the number of panicles and rice productivity in nutrient-poor soils of Madagascar. Crop Science, 61(1), 519–528. https://doi.org/10.1002/csc2.20344
  • Takai, T., Taniguchi, Y., Takahashi, M., Nagasaki, N., Yamamoto, E., Hirose, S., Hara, N., Akashi, H., Ito, J., Arai-Sanoh, Y., Hori, K., Fukuoka, S., Sakai, H., Tokida, T., Usui, Y., Nakamura, H., Kawamura, K., Asai, H. … Uga, Y. (2023). MORE PANICLES 3, a natural allele of OsTB1/FC1, impacts rice yield in paddy fields at elevated CO2 levels. The Plant Journal: For Cell and Molecular Biology, 114(4), 729–742. https://doi.org/10.1111/tpj.16143
  • Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi-Tanaka, M., Ashikari, M., Matsuoka, M., & Ueguchi, C. (2003). The OsTB1 gene negatively regulates lateral branching in rice. The Plant Journal: For Cell and Molecular Biology, 33(3), 513–520. https://doi.org/10.1046/j.1365-313X.2003.01648.x
  • Tsujimoto, Y., Rakotoson, T., Tanaka, A., & Saito, K. (2019). Challenges and opportunities for improving N use efficiency for rice production in sub-saharan africa. Plant Production Science, 22(4), 413–427. https://doi.org/10.1080/1343943X.2019.1617638
  • Vanlauwe, B., Wendt, J., Giller, K. E., Corbeels, M., Gerard, B., & Nolte, C. (2014). A fourth principle is required to define conservation agriculture in sub-saharan Africa: The appropriate use of fertilizer to enhance crop productivity. Field Crops Research, 155, 10–13. https://doi.org/10.1016/j.fcr.2013.10.002