Publication Cover
Redox Report
Communications in Free Radical Research
Volume 28, 2023 - Issue 1
1,496
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Liraglutide ameliorates oxidized LDL-induced endothelial dysfunction by GLP-1R-dependent downregulation of LOX-1-mediated oxidative stress and inflammation

, , , , &

References

  • Herrington W, Lacey B, Sherliker P, et al. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res 2016;118(4):535–546. DOI:10.1161/CIRCRESAHA.115.307611
  • Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016;118(4):620–636.
  • Xu S, Ilyas I, Little PJ, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev 2021;73(3):924–967.
  • Murdaca G, Colombo BM, Cagnati P, et al. Endothelial dysfunction in rheumatic autoimmune diseases. Atherosclerosis. 2012;224(2):309–317.
  • Colombo BM, Murdaca G, Caiti M, et al. Intima-media thickness: a marker of accelerated atherosclerosis in women with systemic lupus erythematosus. Ann N Y Acad Sci 2007;1108:121–126. DOI:10.1196/annals.1422.014
  • Draznin B, Aroda VR, Bakris G, et al. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2022. Diabetes Care 2022; 45(Suppl 1):S125–s143.
  • Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016;375(4):311–322. DOI:10.1056/NEJMoa1603827
  • Arnett DK, Blumenthal RS, Albert MA, et al. Acc/AHA guideline on the primary prevention of cardiovascular disease: executive summary: A report of the American college of cardiology/American heart association task force on clinical practice guidelines. Circulation. 2019;140(11):e563–e595.
  • Cariou B. Harnessing the incretin system beyond glucose control: potential cardiovascular benefits of GLP-1 receptor agonists in type 2 diabetes. Diabetes Metab 2012;38(4):298–308. DOI:10.1016/j.diabet.2012.04.003
  • Ban K, Noyan-Ashraf MH, Hoefer J, et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008;117(18):2340–2350. DOI:10.1161/CIRCULATIONAHA.107.739938
  • Almutairi M, Batran A, Ussher R, et al. Glucagon-like peptide-1 receptor action in the vasculature. Peptides. 2019;111:26–32. DOI:10.1016/j.peptides.2018.09.002
  • Helmstädter J, Frenis K, Filippou K, et al. Endothelial GLP-1 (glucagon-like peptide-1) receptor mediates cardiovascular protection by liraglutide in mice with experimental arterial hypertension. Arterioscler, Thromb, Vasc Biol. 2020;40(1):145–158.
  • Gaspari T, Liu H, Welungoda I, et al. Dear AE: A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE-/- mouse model. Diab Vasc Dis Res. 2011;8(2):117–124. DOI:10.1177/1479164111404257
  • Khatana C, Saini NK, Chakrabarti S, et al. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid Med Cell Longev. 2020;2020:5245308.
  • Kattoor AJ, Kanuri SH, Mehta JL. Role of Ox-LDL and LOX-1 in atherogenesis. Curr Med Chem 2019;26(9):1693–1700.
  • Lee WJ, Ou HC, Hsu WC, et al. Ellagic acid inhibits oxidized LDL-mediated LOX-1 expression, ROS generation, and inflammation in human endothelial cells. J Vasc Surg 2010;52(5):1290–1300.
  • Cominacini L, Pasini AF, Garbin U, et al. Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Biol Chem 2000;275(17):12633–12638. DOI:10.1074/jbc.275.17.12633
  • Chen J, Mehta JL, Haider N, et al. Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells. Circ Res 2004;94(3):370–376. DOI:10.1161/01.RES.0000113782.07824.BE
  • Yue W, Li Y, Ou D, et al. The GLP-1 receptor agonist liraglutide protects against oxidized LDL-induced endothelial inflammation and dysfunction via KLF2. IUBMB Life. 2019;71(9):1347–1354.
  • Nyström T, Gutniak MK, Zhang Q, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Phys Endocrinol Metabol. 2004;287(6):E1209–E1215. DOI:10.1152/ajpendo.00237.2004
  • Wu H, Xiao C, Zhao Y, et al. Liraglutide improves endothelial function via the mTOR signaling pathway. J Diabetes Res. 2021;2021:2936667.
  • Dai Y, Mercanti F, Dai D, et al. LOX-1, a bridge between GLP-1R and mitochondrial ROS generation in human vascular smooth muscle cells. Biochem Biophys Res Commun 2013;437(1):62–66. DOI:10.1016/j.bbrc.2013.06.035
  • Zhang M, Lin L, Xu C, et al. VDR agonist prevents diabetic endothelial dysfunction through inhibition of prolyl isomerase-1-mediated mitochondrial oxidative stress and inflammation. Oxid Med Cell Longev. 2018;2018:1714896.
  • Si X, Zhou Z, Strappe P, et al. A comparison of RS4-type resistant starch to RS2-type resistant starch in suppressing oxidative stress in high-fat-diet-induced obese rats. Food Funct. 2017;8(1):232–240. DOI:10.1039/C6FO01225F
  • Peskin AV, Winterbourn CC. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta. 2000;293(1-2):157–166. DOI:10.1016/S0009-8981(99)00246-6
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95(2):351–358. DOI:10.1016/0003-2697(79)90738-3
  • Van Buul JD, Fernandez-Borja M, Anthony EC, et al. Expression and localization of NOX2 and NOX4 in primary human endothelial cells. Antioxid. Redox Signal. 2005;7(3-4):308–317. DOI:10.1089/ars.2005.7.308
  • Berberich AJ, Hegele RA. Lipid effects of glucagon-like peptide 1 receptor analogs. Curr Opin Lipidol 2021;32(3):191–199.
  • Xu X, Gao X, Potter BJ, et al. Anti-LOX-1 rescues endothelial function in coronary arterioles in atherosclerotic ApoE knockout mice. Arterioscler Thromb Vasc Biol 2007;27(4):871–877. DOI:10.1161/01.ATV.0000259358.31234.37
  • Mehta JL, Sanada N, Hu CP, et al. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res 2007;100(11):1634–1642. DOI:10.1161/CIRCRESAHA.107.149724
  • Dai Y, Dai D, Wang X, et al. GLP-1 agonists inhibit ox-LDL uptake in macrophages by activating protein kinase A. J Cardiovasc Pharmacol 2014;64(1):47–52. DOI:10.1097/FJC.0000000000000087
  • Kattoor AJ, Goel A, Mehta JL. LOX-1: regulation, signaling and its role in atherosclerosis. Antioxidants (Basel, Switzerland). 2019;8(7):218. DOI:10.3390/antiox8070218.
  • Ray R, Shah AM. NADPH oxidase and endothelial cell function. Clin Sci. 2005;109(3):217–226.
  • Hu C, Dandapat A, Sun L, et al. LOX-1 deletion decreases collagen accumulation in atherosclerotic plaque in low-density lipoprotein receptor knockout mice fed a high-cholesterol diet. Cardiovasc Res 2008;79(2):287–293. DOI:10.1093/cvr/cvn110
  • Zhao W, Li C, Gao H, et al. Dihydrotanshinone I attenuates atherosclerosis in ApoE-deficient mice: role of NOX4/NF-κB mediated lectin-like oxidized LDL receptor-1 (LOX-1) of the endothelium. Front Pharmacol. 2016;7:418.
  • Feng Z, Yang X, Zhang L, et al. Ginkgolide B ameliorates oxidized low-density lipoprotein-induced endothelial dysfunction via modulating Lectin-like ox-LDL-receptor-1 and NADPH oxidase 4 expression and inflammatory cascades. Phytother Res PTR. 2018;32(12):2417–2427. DOI:10.1002/ptr.6195
  • Li Q, Lin Y, Wang S, et al. GLP-1 inhibits high-glucose-induced oxidative injury of vascular endothelial cells. Sci Rep. 2017;7(1):8008), DOI:10.1038/s41598-017-06712-z
  • Okabe K, Matsushima S, Ikeda S, et al. Dpp (dipeptidyl peptidase)−4 inhibitor attenuates Ang II (angiotensin II)-induced cardiac hypertrophy via GLP (Glucagon-Like Peptide)−1-Dependent Suppression of Nox (Nicotinamide Adenine Dinucleotide Phosphate Oxidase) 4-HDAC (Histone Deacetylase) 4 Pathway. Hypertension. 2020;75(4):991–1001.
  • He H, Xiao S, Xu G, et al. The NADPH oxidase 4 protects vascular endothelial cells from copper oxide nanoparticles-induced oxidative stress and cell death. Life Sci 2020;252:117571.
  • Zhang Y, Murugesan P, Huang K, et al. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol. 2020;17(3):170–194.