Publication Cover
Redox Report
Communications in Free Radical Research
Volume 28, 2023 - Issue 1
939
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tolerable treatment of glioblastoma with redox-cycling ‘mitocans': a comparative study in vivo

, , , , &

References

  • Ralf SJ, Low P, Dong L, et al. Mitocans: mitochondrial targeted anti-cancer drugs as improved therapies and related patient documents. Recent Pat Anticancer Drug Discov. 2006;1(3):327–346.
  • Dong L, Gopalan V, Holland O, et al. Mitocans revisited: mitochondrial targeting as efficient anti-cancer therapy. Int J Mol Sci. 2020;21:7941.
  • Chen K, Lu P, Beeraka NM, et al. Mitochondrial mutations and mitoepigenetics: focus on regulation of oxidative stress-induced response in breast cancers. Semin Cancer Biol. 2022;83:556–559.
  • Bakalova R, Semkova S, Ivanova D, et al. Selective targeting of cancerous mitochondria and suppression of tumor growth using redox-active treatment adjuvant. Oxid Med Cell Longev. 2020;2020:6212935.
  • Sumiyoshi A, Shibata S, Zhelev Z, et al. Targeting glioblastoma via selective alteration of mitochondrial redox-state. Cancers (Basel). 2022;14(3):485.
  • Ren X, Santhosh SM, Coppo L, et al. The combination of ascorbate and menadione causes cancer cell death by oxidative stress and replicative stress. Free Radic Biol Med. 2019;134:350–358.
  • Verrax J, Beck R, Dejeans RB, et al. Redox-active quinones and ascorbate: an innovative cancer therapy that exploits the vulnerability of cancer cells to oxidative stress. Anticancer Agents Med Chem. 2011;11(2):213–221.
  • Hseu Y-C, Tsai T-J, Korivi M, et al. Antitumor properties of coenzyme Q0 against human ovarian carcinoma cells via induction of ROS-mediated apoptosis and cytoprotective autophagy. Sci Rep. 2017;7:8062.
  • Yang H-L, Tsai C-H, Shrestha S, et al. Coenzyme Q0, a novel quinone derivative of Antrodia camphorate, indices ROS-mediated cytotoxic autophagy and apoptosis against human glioblastoma cells in vitro and in vivo. Food Chem Toxicol. 2021;155:112384.
  • Yang H-L, Chiu L-W, Lin Y-A, et al. In vitro and in vivo anti-tumor activity of coenzyme Q0 against TWIST1-overexpressing HNSCC cells: ROS-mediated inhibition of EMT/metastasis and autophagy/apoptosis induction. Toxicol Appl Pharmacol. 2023;116453.
  • Pereyra CE, Dantas RF, Ferreira SB, et al. The diverse mechanisms and anticancer potential of naphthoquinones. Cancer Cell Int. 2019;19:207.
  • Tareen B, Summers JL, Jamison JM, et al. A 12-week, open label, phase I/IIa study using apatone for the treatment of prostate cancer patients who have failed standard therapy. Int J Med Sci. 2008;5(2):62–67.
  • US National Library of Medicine Home Page. Double-blinded clinical trial using Apatone-B for symptomatic postoperative total joint replacement (Apatone-B). ClinicalTrials.gov.Identifier:NCT01272830.
  • Hidalgo-Gutierres A, Gonzalez-Garcia P, Diaz-Casado ME, et al. Metabolic targets of coenzyme Q10 in mitochondria. Antioxidants. 2021;10(4):520.
  • Hargreaves IP. Coenzyme Q10 as a therapy for mitochondrial disease. Int J Biochem Cell Biol. 2014;49:105–111.
  • Hitomi M, Yokoyama F, Kita Y, et al. Antitumor effects of vitamins K1, K2 and K3 on hepatocellular carcinoma in vitro and in vivo. Int J Oncol. 2005;26(3):713–720.
  • Xu W, Wu H, Chen S, et al. Cytotoxic effects of vitamins K1, K2, and K3 against human T lymphoblastoid leukemia cells through apoptosis induction and cell cycle arrest. Chem Biol Drug Design. 2020;96(4):1134–1147.
  • Yonezawa Y, Kuriyama I, Fukuoh A, et al. Inhibitory effect of coenzyme Q1 on eukaryotic DNA polymerase gamma and DNA topoisomerase II activities on the growth of a human cancer cell line. Cancer Sci. 2006;97(8):716–723.
  • Nakagawa K, Hirota Y, Sawada N, et al. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature. 2010;468(7320):117–121.
  • Mugoni V, Postel R, Catanzaro V, et al. UBIAD1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell. 2013;152(3):504–518.
  • The Human Protein Atlas. UBIAD1 Protein Expression Summary. Available from: http://www.proteinatlas.org/ENSG00000120942-UBIAD1. [accessed 2022 October 20].
  • Azad A, Kong A. The therapeutic potential of imidazole or quinone-based compounds as radiosensitizers in combination with radiotherapy for the treatment of head and neck squamous cell carcinoma. Cancers (Basel). 2022;14:4694.
  • Saibu M, Sagar S, Green I, et al. Evaluating the cytotoxic effects of novel quinone compounds. Anticancer Res. 2014;34(8):4077–4086.
  • Li Y, Lin R, Peng X, et al. The role of mitochondrial quality control in anthracycline-induced cardiotoxicity: from bench to bedside. Oxid Med Cell Longev. 2022;2022:3659278.
  • Huang J, Wu R, Chen L, et al. Understanding anthracycline cardiotoxicity from mitochondrial aspect. Front Pharmacol. 2022;13:811406.
  • Sumiyoshi A, Shibata S, Zhelev Z, et al. Pharmacological strategy for selective targeting of glioblastoma by redox-active combination drug – comparison with the chemotherapeutic standard-of-care temozolomide. Anticancer Res. 2021;41(12):6067–6076.
  • Femandes C, Costa A, Osorio L, et al. Chapter 11: current standard of care in glioblastoma therapy. In: D Vleeschouwer S, editor. Glioblastoma. Brisbane: Codon Publ.; 2017.
  • Tatar Z, Thivat E, Planchat E, et al. Temozolomide and unusual indications: review of literature. Cancer Treat Rev. 2013;39(2):125–135.
  • Bakalova R, Lazarova D, Sumiyoshi A, et al. Redox-cycling “mitocans” as effective new developments in anticancer therapy. Int J Mol Sci. 2023;24:8435.
  • Tielens AGM, Rotte C, van Hellemond JJ, et al. Mitochondria as we don`t know them. Trends Biochem Sci. 2002;27:564–572.
  • Collins RRJ, Patel K, Putman WC, et al. Oncometabolites: A new paradigm for oncology,: metabolism, and clinical laboratory. Clin Chem. 2017;63:1812–1820.
  • Robb EL, Hall AR, Prime TA, et al. Control of mitochondrial superoxide production by reverse electron transport at complex I. J Biol Chem. 2018;239:9869–9879.
  • Despotovic A, Mircic A, Misirlic-Dencic S, et al. Combination of ascorbic acid and menadione induces cytotoxic autophagy in human glioblastoma cells. Oxid Med Cell Longev. 2022;2022:2998132.
  • Spindler M, Flint Beal M, Henchcliffe C. Coenzyme Q10 effects in neurodegenerative disease. Neuropsychiatr Dis Treat. 2009;5:597–610.
  • Cheng H-L, Lee Y-H, Yuan T-M, et al. Update on a tumor-associated NADH oxidase in gastric cancer cell growth. World J Gastroenterol. 2016;22(10):2900–2905.
  • Jiang Z, Gorenstein NM, Morré DM, et al. Molecular cloning and characterization of a candidate human growth-related and time-keeping constitutive cell surface hydroquinone (NADH) oxidase. Biochemistry. 2008;47(52):14028.
  • Islam A, Hsieh P-F, Liu P-F, et al. Capsaicin exerts therapeutic effects by targeting tNOX-SIRT1 axis and augmenting ROS-dependent cytotoxic autophagy in melanoma cancer cells. Am J Cancer Res. 2021;11(9):4199–4219.
  • Eilaghi A, Yeung T, d`Esterre C, et al. Quantitative perfusion and permeability biomarkers in brain cancer from tomographic CT and MR images. Biomark Cancer. 2016;8(Suppl):47–59.
  • Van Dijken BRJ, Van Laar PJ, Smits M, et al. Perfusion MRI in treatment evaluation of glioblastomas: clinical relevance of current and future techniques. J Magn Reson Imaging. 2019;49(1):11–22.
  • Lah TT, Novak M, Breznik B. Brain malignancies: glioblastoma and brain metastasis. Semin Cancer Biol. 2020;60:262–273.
  • Couto M, Coelho-Santos V, Santos L, et al. The interplay between glioblastoma and microglial cells leads to endothelial cell monolayer dysfunction via the interleukin-6-induced JAK2/STAT3 pathway. J Cell Physiol. 2019;234(11):19750–19760.
  • Zheng X, Hou Y, He H, et al. Synthetic vitamin K analogs inhibit inflammation by targeting the NLRP3 inflammasome. Cell Mol Immunol. 2021;18(10):2422–2430.
  • Hseu Y-C, Tseng Y-F, Pandey S, et al. Coenzyme Q0 inhibits NLRP3 inflammasome activation through mitophagy induction in LPS/ATP-stimulated macrophages. Oxid Med Cell Longev. 2022;2022:4266214.
  • Castellano A, Bailo M, Cicone F, et al. Advanced imaging techniques for radiotherapy planning of gliomas. Cancers (Basel). 2021;13(5):1063.
  • Song J, Kadaba P, Kravitz A, et al. Multiparametric MRI for early identification of therapeutic response in recurrent glioblastoma treated with immune checkpoint inhibitors. Neurol Oncol. 2020;22(11):1658–1666.
  • Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in glioma. Magn Reson Imaging. 1999;9(1):53–60.
  • Tourell MC, Shokoohmand A, Landgrave M, et al. The distribution of the apparent diffusion coefficient as an indicator of the response to chemotherapeutics in ovarian tumor xenografts. Sci Rep. 2017;7:42905.
  • Surov A, Meyer HJ, Wienke A. Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget. 2017;8(35):59492–9.
  • Fliedner FP, Engel TB, El-Ali HH, et al. Diffusion weighted magnetic resonance imaging (DW-MRI) as a non-invasive, tissue cellularity marker to monitor cancer treatment response. BMC Cancer. 2020;20:134.
  • Gilloteaux J, Jamison JM, Arnold D, et al. Ultrastructural aspects of autoschizis: a new cancer cell death induced by the synergistic action of ascorbate/menadione on human bladder carcinoma cells. Ultrastruct Pathol. 2001;25(3):183–192.