Publication Cover
Redox Report
Communications in Free Radical Research
Volume 28, 2023 - Issue 1
1,433
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Inhibition of MEG3 ameliorates cardiomyocyte apoptosis and autophagy by regulating the expression of miRNA-129-5p in a mouse model of heart failure

, , , , , & show all

References

  • Batkai S, Genschel C, Viereck J, et al. CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. Eur Heart J. 2021;42(2):192–201. doi:10.1093/eurheartj/ehaa791
  • Gao G, Chen W, Yan M, et al. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. Int J Mol Med. 2020;45(1):195–209.
  • Piccoli MT, Gupta SK, Viereck J, et al. Inhibition of the Cardiac Fibroblast-Enriched lncRNA Meg3 Prevents Cardiac Fibrosis and Diastolic Dysfunction. Circ Res. 2017;121(5):575–583. doi:10.1161/CIRCRESAHA.117.310624
  • Zhang J, Liang Y, Huang X, et al. STAT3-induced upregulation of lncRNA MEG3 regulates the growth of cardiac hypertrophy through miR-361-5p/HDAC9 axis. Sci Rep. 2019;9(1):460. doi:10.1038/s41598-018-36369-1
  • Zhou XM, Liu J, Wang Y, et al. Silencing of long noncoding RNA MEG3 enhances cerebral protection of dexmedetomidine against hypoxic-ischemic brain damage in neonatal mice by binding to miR-129-5p. J Cell Biochem. 2018.
  • Zhang H, Zhang X, Zhang J. MiR-129-5p inhibits autophagy and apoptosis of H9c2 cells induced by hydrogen peroxide via the PI3 K/AKT/mTOR signaling pathway by targeting ATG14. Biochem Biophys Res Commun. 2018;506(1):272–277. doi:10.1016/j.bbrc.2018.10.085
  • Zhang N, Zhang Y, Qian H, et al. Selective targeting of ubiquitination and degradation of PARP1 by E3 ubiquitin ligase WWP2 regulates isoproterenol-induced cardiac remodeling. Cell Death Differ. 2020;27(9):2605–2619. doi:10.1038/s41418-020-0523-2
  • Jin W, Zhang Y, Xue Y, et al. Crocin attenuates isoprenaline-induced myocardial fibrosis by targeting TLR4/NF-kappaB signaling: connecting oxidative stress, inflammation, and apoptosis. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(1):13–23. doi:10.1007/s00210-019-01704-4
  • Ghorbanzadeh V, Jafarpour A, Pirnia A, et al. The role of vasopressin V1A and oxytocin OTR receptors in protective effects of arginine vasopressin against H2O2-induced oxidative stress in H9C2 cells. Arch Physiol Biochem. 2022;128(3):830–835. doi:10.1080/13813455.2020.1729816
  • Lee JH, Kim DH, Kim M, et al. Mitochondrial ROS-mediated metabolic and cytotoxic effects of isoproterenol on cardiomyocytes are p53-dependent and reversed by curcumin. Molecules. 2022;27(4):1346. doi:10.3390/molecules27041346
  • Modesti A, Bertolozzi I, Gamberi T, et al. Hyperglycemia activates JAK2 signaling pathway in human failing myocytes via angiotensin II-mediated oxidative stress. Diabetes. 2005;54(2):394–401. doi:10.2337/diabetes.54.2.394
  • Liu X, Tong Z, Chen K, et al. The role of miRNA-132 against apoptosis and oxidative stress in heart failure. Biomed Res Int. 2018;2018:3452748.
  • Su M, Wang J, Wang C, et al. MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis. Cell Death Differ. 2015;22(6):986–999. doi:10.1038/cdd.2014.200
  • Gustafsson AB, Gottlieb RA. Recycle or die: the role of autophagy in cardioprotection. J Mol Cell Cardiol. 2008;44(4):654–661. doi:10.1016/j.yjmcc.2008.01.010
  • Wang L, Gao M, Chen J, et al. Resveratrol ameliorates pressure overload-induced cardiac dysfunction and attenuates autophagy in rats. J Cardiovasc Pharmacol. 2015;66(4):376–382. doi:10.1097/FJC.0000000000000290
  • Hang P, Zhao J, Su Z, et al. Choline inhibits ischemia-reperfusion-induced cardiomyocyte autophagy in Rat myocardium by activating Akt/mTOR signaling. Cell Physiol Biochem. 2018;45(5):2136–2144. doi:10.1159/000488049
  • Senoner T, Dichtl W. Oxidative Stress in Cardiovascular Diseases: still a therapeutic target? Nutrients. 2019;11(9).
  • Zhan H, Huang F, Niu Q, et al. Downregulation of miR-128 ameliorates Ang II-induced cardiac remodeling via SIRT1/PIK3R1 multiple targets. Oxid Med Cell Longev. 2021;2021:8889195.
  • van der Pol A, van Gilst WH, Voors AA, et al. Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail. 2019;21(4):425–435. doi:10.1002/ejhf.1320
  • Fan C, Tang X, Ye M, et al. Qi-Li-Qiang-Xin alleviates isoproterenol-induced myocardial injury by inhibiting excessive autophagy via activating AKT/mTOR pathway. Front Pharmacol. 2019;10:1329. doi:10.3389/fphar.2019.01329
  • Attalla DM, Ahmed LA, Zaki HF, et al. Paradoxical effects of atorvastatin in isoproterenol-induced cardiotoxicity in rats: role of oxidative stress and inflammation. Biomed Pharmacother. 2018;104:542–549. doi:10.1016/j.biopha.2018.05.005
  • Park WH. MAPK inhibitors, particularly the JNK inhibitor, increase cell death effects in H2O2-treated lung cancer cells via increased superoxide anion and glutathione depletion. Oncol Rep. 2018;39(2):860–870.
  • Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol[J]. 2011;301(6):H2181–H2190. doi:10.1152/ajpheart.00554.2011
  • Sun Y, Xie Y, Du L, et al. Inhibition of BRD4 attenuates cardiomyocyte apoptosis via NF-kappaB pathway in a rat model of myocardial infarction. Cardiovasc Ther. 2018;36(2).
  • Chen J, Huang ZP, Seok HY, et al. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res. 2013;112(12):1557–1566. doi:10.1161/CIRCRESAHA.112.300658
  • Wu X, Li M, Chen SQ, et al. Pin1 facilitates isoproterenol-induced cardiac fibrosis and collagen deposition by promoting oxidative stress and activating the MEK1/2-ERK1/2 signal transduction pathway in rats. Int J Mol Med. 2018;41(3):1573–1583.
  • Yan X, Wu H, Ren J, et al. Shenfu Formula reduces cardiomyocyte apoptosis in heart failure rats by regulating microRNAs. J Ethnopharmacol. 2018;227:105–112. doi:10.1016/j.jep.2018.05.006
  • D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–592. doi:10.1002/cbin.11137
  • Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2(9):647–656. doi:10.1038/nrc883
  • Virzi GM, Clementi A, Ronco C. Cellular apoptosis in the cardiorenal axis. Heart Fail Rev. 2016;21(2):177–189. doi:10.1007/s10741-016-9534-y
  • Zhao LY, Li X, Gao L, et al. LncRNA MEG3 accelerates apoptosis of hypoxic myocardial cells via FoxO1 signaling pathway. Eur Rev Med Pharmacol Sci. 2019 Aug;23(3 Suppl):334–340.
  • Chen Y, Zhang Z, Zhu D, et al. Long non-coding RNA MEG3 serves as a ceRNA for microRNA-145 to induce apoptosis of AC16 cardiomyocytes under high glucose condition. Biosci Rep. 2019 Jun 28;39(6).
  • Osterholt M, Nguyen TD, Schwarzer M, et al. Alterations in mitochondrial function in cardiac hypertrophy and heart failure. Heart Fail Rev. 2013;18(5):645–656. doi:10.1007/s10741-012-9346-7
  • Lucas AMB, de Lacerda Alexandre JV, Araújo MTS, et al. Diazoxide modulates cardiac hypertrophy by targeting H2O2 generation and mitochondrial superoxide dismutase activity. Curr Mol Pharmacol. 2020;13(1):76–83. doi:10.2174/1874467212666190723144006
  • Ahmad A, Prakash R, Khan MS, et al. Enhanced antioxidant effects of naringenin nanoparticles synthesized using the high-energy ball milling method. ACS Omega. 2022;7(38):34476–34484. doi:10.1021/acsomega.2c04148
  • Zhang H, Dong R, Zhang P, et al. Songorine suppresses cell growth and metastasis in epithelial ovarian cancer via the Bcl2/Bax and GSK3beta/betacatenin signaling pathways. Oncol Rep. 2019;41(5):3069–3079.
  • Ouyang C, Huang L, Ye X, et al. Overexpression of miR-1298 attenuates myocardial ischemia-reperfusion injury by targeting PP2A. J Thromb Thrombolysis. 2022;53(1):136–148. doi:10.1007/s11239-021-02540-1
  • Nandi SS, Katsurada K, Sharma NM, et al. MMP9 inhibition increases autophagic flux in chronic heart failure. Am J Physiol Heart Circ Physiol. 2020;319(6):H1414–H1437. doi:10.1152/ajpheart.00032.2020
  • Zhu H, Tannous P, Johnstone JL, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest. 2007;117(7):1782–1793. doi:10.1172/JCI27523
  • Nishida K, Yamaguchi O, Otsu K. Crosstalk between autophagy and apoptosis in heart disease. Circ Res. 2008;103(4):343–351. doi:10.1161/CIRCRESAHA.108.175448
  • Sun Y, Yao X, Zhang QJ, et al. Beclin-1-Dependent autophagy protects the heart during sepsis. Circulation. 2018;138(20):2247–2262. doi:10.1161/CIRCULATIONAHA.117.032821
  • Ren PH, Zhang ZM, Wang P, et al. Yangxinkang tablet protects against cardiac dysfunction and remodelling after myocardial infarction in rats through inhibition of AMPK/mTOR-mediated autophagy. Pharm Biol. 2020;58(1):321–327. doi:10.1080/13880209.2020.1748662
  • He R, Peng J, Yuan P, et al. Divergent roles of BECN1 in LC3 lipidation and autophagosomal function. Autophagy. 2015;11(5):740–747. doi:10.1080/15548627.2015.1034404
  • Lin X, Li S, Zhao Y, et al. Interaction domains of p62: a bridge between p62 and selective autophagy. DNA Cell Biol. 2013;32(5):220–227. doi:10.1089/dna.2012.1915
  • Zhang X, Yang K, Zhang H, et al. Effect of typhaneoside on ventricular remodeling and regulation of PI3 K/Akt/mTOR pathway. Herz. 2020 Dec;45(Suppl 1):113–122.
  • Chen X, Li M, Chen D, et al. Autophagy induced by calcium phosphate precipitates involves endoplasmic reticulum membranes in autophagosome biogenesis. PLoS One. 2012;7(12):e52347. doi:10.1371/journal.pone.0052347