Publication Cover
Redox Report
Communications in Free Radical Research
Volume 28, 2023 - Issue 1
2,122
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Deeper insight into ferroptosis: association with Alzheimer’s, Parkinson’s disease, and brain tumors and their possible treatment by nanomaterials induced ferroptosis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & show all

References

  • Aw E, Zhang Y, Yalcin E, et al. Chapter two – neuropsychiatric disorders: an immunological perspective. In: Alt FW, Murphy KM, editors. Advances in immunology. Academic Press; 2021. Vol. 152, p. 83–155. doi:10.1016/bs.ai.2021.09.002
  • Cristino AS, Williams SM, Hawi Z, et al. Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Mol Psychiatry. 2014;19:294–301. doi:10.1038/mp.2013.16
  • Guo X, Lie Q, Liu Y, et al. Multifunctional selenium quantum dots for the treatment of Alzheimer’s disease by reducing Aβ-neurotoxicity and oxidative stress and alleviate neuroinflammation. ACS Appl Mater Interfaces. 2021;13:30261–30273. doi:10.1021/acsami.1c00690
  • Bernardi J, Aromolaran KA, Aromolaran AS. Neurological disorders and risk of arrhythmia. Int J Mol Sci. 2021;22:1–15. doi:10.3390/ijms22010188
  • Shan Y, Wang H, Yang Y, et al. Evidence of a large current of transcranial alternating current stimulation directly to deep brain regions. Mol Psychiatry. 2023. doi:10.1038/s41380-023-02150-8
  • Lamptey RNL, Chaulagain B, Trivedi R, et al. A review of the common neurodegenerative disorders: current therapeutic approaches and the potential role of nanotherapeutics. Int J Mol Sci. 2022;23. doi:10.3390/ijms23031851
  • Esposito E, Fantin M, Marti M, et al. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm Res. 2008;25:1521–1530. doi:10.1007/s11095-007-9514-y
  • Nowacek A, Kosloski LM, Gendelman HE. Neurodegenerative disorders and nanoformulated drug development. Nanomedicine. 2009;4:541–555. doi:10.2217/nnm.09.37
  • Basso AS, Frenkel D, Quintana FJ, et al. Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J Clin Invest. 2008;118:1532–1543. doi:10.1172/JCI33464
  • Cascione M, De Matteis V, Leporatti S, et al. The new frontiers in neurodegenerative diseases treatment: liposomal-based strategies. Front Bioeng Biotechnol. 2020;8. doi:10.3389/fbioe.2020.566767
  • Kormas P, Moutzouri A. Current psychological approaches in neurodegenerative diseases. In: Vlamos P, Kotsireas IS, Tarnanas I, editors. Handbook of computational neurodegeneration. Cham: Springer International Publishing; 2020. p. 1–29. doi:10.1007/978-3-319-75479-6_10-1
  • Ahir BK, Engelhard HH, Lakka SS. Tumor development and angiogenesis in adult brain tumor: glioblastoma. Mol Neurobiol. 2020;57:2461–2478. doi:10.1007/s12035-020-01892-8
  • Zhang Z, Wang L, Zheng W, et al. Endoscope image mosaic based on pyramid ORB. Biomed Signal Process Control. 2022;71:103261. doi:10.1016/j.bspc.2021.103261
  • Reichert CO, de Freitas FA, Sampaio-Silva J, et al. Ferroptosis mechanisms involved in neurodegenerative diseases. Int J Mol Sci. 2020;21:1–27. doi:10.3390/ijms21228765
  • Zhang L, Jia R, Li H, et al. Insight into the double-edged role of ferroptosis in disease. Biomolecules. 2021;11:1790. doi:10.3390/biom11121790
  • Cheng Y, Song Y, Chen H, et al. Ferroptosis mediated by lipid reactive oxygen species: a possible causal link of neuroinflammation to neurological disorders. Oxid Med Cell Longev. 2021;2021. doi:10.1155/2021/5005136
  • Zhou J, Jin Y, Lei Y, et al. Ferroptosis is regulated by mitochondria in neurodegenerative diseases. Neurodegener Dis. 2020;20:20–34. doi:10.1159/000510083
  • Zhang M, Lei Q, Huang X, et al. Molecular mechanisms of ferroptosis and the potential therapeutic targets of ferroptosis signaling pathways for glioblastoma. Front Pharmacol. 2022;13:1071897.
  • Potapenko AY, Saparov SM, Agamalieva MA, et al. Fe2 + ions and reduced glutathione – chemical activators of psoralen-sensitized photohaemolysis. J Photochem Photobiol B. 1993;17:69–75. doi:10.1016/1011-1344(93)85009-W
  • Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019;133:144–152. doi:10.1016/j.freeradbiomed.2018.09.014
  • Wang Y, Tang B, Zhu J, et al. Emerging mechanisms and targeted therapy of ferroptosis in neurological diseases and neuro-oncology. Int J Biol Sci. 2022;18:4260–4274. doi:10.7150/ijbs.72251
  • Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–285. doi:10.1016/j.cell.2017.09.021
  • Eaton JK, Furst L, Ruberto RA, et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat Chem Biol. 2020;16:497–506. doi:10.1038/s41589-020-0501-5
  • Cheff DM, Huang C, Scholzen KC, et al. The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biol. 2023;62:102703. doi:10.1016/j.redox.2023.102703
  • Teng KW, Tsai ST, Hattori T, et al. Selective and noncovalent targeting of RAS mutants for inhibition and degradation. Nat Commun. 2021;12:2656. doi:10.1038/s41467-021-22969-5
  • Fan BY, Pang YL, Li WX, et al. Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4. Neural Regen Res. 2021;16:561–566. doi:10.4103/1673-5374.293157
  • Hu W-M, Liu S-Q, Zhu K-F, et al. The ALOX5 inhibitor Zileuton regulates tumor-associated macrophage M2 polarization by JAK/STAT and inhibits pancreatic cancer invasion and metastasis. Int Immunopharmacol. 2023;121:110505. doi:10.1016/j.intimp.2023.110505
  • Jiang Y, Mao C, Yang R, et al. EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics. 2017;7:3293–3305. doi:10.7150/thno.19988
  • Jiang X, Chen J, Bajić A, et al. Quantitative real-time imaging of glutathione. Nat Commun. 2017;8:16087. doi:10.1038/ncomms16087
  • Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62. doi:10.1038/nature14344
  • Tang D, Kroemer G. Ferroptosis. Curr Biol. 2020;30:R1292–R1297. doi:10.1016/j.cub.2020.09.068
  • Liu Y, Gu W. P53 in ferroptosis regulation: the new weapon for the old guardian. Cell Death Differ. 2022;29:895–910. doi:10.1038/s41418-022-00943-y
  • Song Q, Peng S, Che F, et al. Artesunate induces ferroptosis via modulation of p38 and ERK signaling pathway in glioblastoma cells. J Pharmacol Sci. 2022;148:300–306. doi:10.1016/j.jphs.2022.01.007
  • Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13:91–98. doi:10.1038/nchembio.2239
  • Song X, Long D. Nrf2 and ferroptosis: a new research direction for neurodegenerative diseases. Front Neurosci. 2020;14. doi:10.3389/fnins.2020.00267
  • Gaschler MM, Andia AA, Liu H, et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol. 2018;14:507–515. doi:10.1038/s41589-018-0031-6
  • Li W, Xiang Z, Xing Y, et al. Mitochondria bridge HIF signaling and ferroptosis blockage in acute kidney injury. Cell Death Dis. 2022;13:308. doi:10.1038/s41419-022-04770-4
  • Lee J, You JH, Kim M-S, et al. Epigenetic reprogramming of epithelial-mesenchymal transition promotes ferroptosis of head and neck cancer. Redox Biol. 2020;37:101697. doi:10.1016/j.redox.2020.101697
  • Zhou B, Liu J, Kang R, et al. Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. 2020;66:89–100. doi:10.1016/j.semcancer.2019.03.002
  • Zille M, Oses-Prieto JA, Savage SR, et al. Hemin-induced death models hemorrhagic stroke and is a variant of classical neuronal ferroptosis. J Neurosci. 2022;42:2065–2079. doi:10.1523/JNEUROSCI.0923-20.2021
  • Yang X-D, Yang Y-Y. Ferroptosis as a novel therapeutic target for diabetes and its complications. Front Endocrinol. 2022;13:853822.
  • Zhang Y, Shi J, Liu X, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 2018;20:1181–1192. doi:10.1038/s41556-018-0178-0
  • Brown CW, Amante JJ, Mercurio AM. Cell clustering mediated by the adhesion protein PVRL4 is necessary for α6β4 integrin-promoted ferroptosis resistance in matrix-detached cells. J Biol Chem. 2018;293:12741–12748. doi:10.1074/jbc.RA118.003017
  • Vanden BT, Linkermann A, Jouan-Lanhouet S, et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15:135–147. doi:10.1038/nrm3737
  • Schnapp G, Neubauer H, Büttner FH, et al. A small-molecule inhibitor of lectin-like oxidized LDL receptor-1 acts by stabilizing an inactive receptor tetramer state. Commun Chem. 2020;3:75. doi:10.1038/s42004-020-0321-2
  • Wu J, Minikes AM, Gao M, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling. Nature. 2019;572:402–406. doi:10.1038/s41586-019-1426-6
  • Dai E, Zhang W, Cong D, et al. AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochem Biophys Res Commun. 2020;523:966–971. doi:10.1016/j.bbrc.2020.01.066
  • Poltorack CD, Dixon SJ. Understanding the role of cysteine in ferroptosis: progress & paradoxes. FEBS J. 2022;289:374–385. doi:10.1111/febs.15842
  • Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107–125. doi:10.1038/s41422-020-00441-1
  • Xavier da Silva TN, Schulte C, Alves AN, et al. Molecular characterization of AIFM2/FSP1 inhibition by iFSP1-like molecules. Cell Death Dis. 2023;14:281. doi:10.1038/s41419-023-05787-z
  • Tang D, Kroemer G. Peroxisome: the new player in ferroptosis. Signal Transduct Target Ther. 2020;5:273. doi:10.1038/s41392-020-00404-3
  • Kraft VAN, Bezjian CT, Pfeiffer S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 2020;6:41–53. doi:10.1021/acscentsci.9b01063
  • Koppula P, Zhuang L, Gan B. Cytochrome P450 reductase (POR) as a ferroptosis fuel. Protein Cell. 2021;12:675–679. doi:10.1007/s13238-021-00823-0
  • Chen X, Xu S, Zhao C, et al. Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem Biophys Res Commun. 2019;516:37–43. doi:10.1016/j.bbrc.2019.06.015
  • Hirata Y, Cai R, Volchuk A, et al. Lipid peroxidation increases membrane tension, piezo1 gating, and cation permeability to execute ferroptosis. Curr Biol. 2023;33:1282–1294.e5. doi:10.1016/j.cub.2023.02.060
  • Zhou S-Y, Cui G-Z, Yan X-L, et al. Mechanism of ferroptosis and its relationships with other types of programmed cell death: insights for potential interventions after intracerebral hemorrhage. Front Neurosci. 2020;14:589042.
  • Lei G, Mao C, Yan Y, et al. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell. 2021;12:836–857. doi:10.1007/s13238-021-00841-y
  • Procaccianti M, Motta A, Giordani S, et al. First case of typhoid fever due to extensively drug-resistant Salmonella enterica serovar typhi in Italy. Pathogens. 2020;9. doi:10.3390/pathogens9020151
  • Walsh DJ, Bernard DJ, Pangilinan F, et al. Mito-SiPE is a sequence-independent and PCR-free mtDNA enrichment method for accurate ultra-deep mitochondrial sequencing. Commun Biol. 2022;5:1269. doi:10.1038/s42003-022-04182-2
  • Moujalled D, Strasser A, Liddell JR. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ. 2021;28:2029–2044. doi:10.1038/s41418-021-00814-y
  • Chen Q, Kang J, Fu C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther. 2018;3:18. doi:10.1038/s41392-018-0018-5
  • Ashraf A, So PW. Spotlight on ferroptosis: iron-dependent cell death in Alzheimer’s disease. Front Aging Neurosci. 2020;12. doi:10.3389/fnagi.2020.00196
  • Lee JY, Kim WK, Bae KH, et al. Lipid metabolism and ferroptosis. Biology. 2021;10:1–16. doi:10.3390/biology10030184
  • Kuang F, Liu J, Tang D, et al. Oxidative damage and antioxidant defense in ferroptosis. Front Cell Dev Biol. 2020;8. doi:10.3389/fcell.2020.586578
  • Capelletti MM, Manceau H, Puy H, et al. Ferroptosis in liver diseases: an overview. Int J Mol Sci. 2020;21:1–23. doi:10.3390/ijms21144908
  • Conrad M, Friedmann Angeli JP. Glutathione peroxidase 4 (Gpx4) and ferroptosis: what’s so special about it? Mol Cell Oncol. 2015;2:e995047. doi:10.4161/23723556.2014.995047
  • Chen Y, Fang Z-M, Yi X, et al. The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis. 2023;14:205. doi:10.1038/s41419-023-05716-0
  • Yan H, Zou T, Tuo Q, et al. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther. 2021;6:49. doi:10.1038/s41392-020-00428-9
  • Xu S, Li X, Wang Y. Regulation of the p53-mediated ferroptosis signaling pathway in cerebral ischemia stroke (review). Exp Ther Med. 2023;25. doi:10.3892/etm.2023.11812
  • Wang H, Guo M, Wei H, et al. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther. 2023;8:92. doi:10.1038/s41392-023-01347-1
  • Sun X, Ou Z, Chen R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016;63:173–184.
  • Li FJ, Long HZ, Zhou ZW, et al. System Xc−/GSH/GPX4 axis: an important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol. 2022;13. doi:10.3389/fphar.2022.910292
  • Liu J, Zhang C, Wang J, et al. The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int J Mol Sci. 2020;21:1–19. doi:10.3390/ijms21218387
  • Forcina GC, Dixon SJ. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 2019;19:1800311. doi:10.1002/pmic.201800311
  • Dai E, Zhang W, Cong D, et al. AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochem Biophys Res Commun. 2020;523:966–971. doi:10.1016/j.bbrc.2020.01.066
  • Levonen A-L, Lapatto R, Saksela M, et al. Human cystathionine γ-lyase: developmental and in vitro expression of two isoforms. Biochem J. 2000;347:291–295. doi:10.1042/bj3470291
  • Chen L, Zhang Z, Hoshino A, et al. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism. Nat Metab. 2019;1:404–415. doi:10.1038/s42255-019-0043-x
  • Rižner TL, Penning TM. Role of aldo–keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids. 2014;79:49–63. doi:10.1016/j.steroids.2013.10.012
  • Chowhan RK, Rahaman H, Singh LR. Structural basis of peroxidase catalytic cycle of human Prdx6. Sci Rep. 2020;10:17416. doi:10.1038/s41598-020-74052-6
  • Liao J, Zhang Y, Chen X, et al. The roles of peroxiredoxin 6 in brain diseases. Mol Neurobiol. 2021;58:4348–4364. doi:10.1007/s12035-021-02427-5
  • Arnér ESJ, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267:6102–6109. doi:10.1046/j.1432-1327.2000.01701.x
  • Bjørklund G, Zou L, Wang J, et al. Thioredoxin reductase as a pharmacological target. Pharmacol Res. 2021;174:105854. doi:10.1016/j.phrs.2021.105854
  • Pan L, Gong C, Sun Y, et al. Induction mechanism of ferroptosis: a novel therapeutic target in lung disease. Front Pharmacol. 2022;13:1093244.
  • Frydrych A, Krośniak M, Jurowski K. The role of chosen essential elements (Zn, Cu, Se, Fe, Mn) in food for special medical purposes (FSMPs) dedicated to oncology patients – critical review: state-of-the-art. Nutrients. 2023;15. doi:10.3390/nu15041012
  • Lu S, Yang B, Xiao Y, et al. Iterative reconstruction of low-dose CT based on differential sparse. Biomed Signal Process Control. 2023;79:104204. doi:10.1016/j.bspc.2022.104204
  • Ni S, Yuan Y, Kuang Y, et al. Iron metabolism and immune regulation. Front Immunol. 2022;13:816282. doi:10.3389/fimmu.2022.816282
  • Kumar SB, Arnipalli SR, Mehta P, et al. Iron deficiency anemia: efficacy and limitations of nutritional and comprehensive mitigation strategies. Nutrients. 2022;14. doi:10.3390/nu14142976
  • Zheng H, Long W, Tan W, et al. Anaemia, iron deficiency, iron-deficiency anaemia and their associations with obesity among schoolchildren in Guangzhou, China. Public Health Nutr. 2020;23:1693–1702. doi:10.1017/S1368980019003604
  • Puig S, Ramos-Alonso L, Romero AM, et al. The elemental role of iron in DNA synthesis and repair. Metallomics. 2017;9:1483–1500. doi:10.1039/c7mt00116a
  • Fernández-García V, González-Ramos S, Martín-Sanz P, et al. Unraveling the interplay between iron homeostasis, ferroptosis and extramedullary hematopoiesis. Pharmacol Res. 2022;183:106386. doi:10.1016/j.phrs.2022.106386
  • Li J, Cao F, Yin H, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11:88. doi:10.1038/s41419-020-2298-2
  • Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. doi:10.1155/2014/360438
  • Lei P, Bai T, Sun Y. Mechanisms of ferroptosis and relations with regulated cell death: a review. Front Physiol. 2019;10:139. doi:10.3389/fphys.2019.00139
  • Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107–125. doi:10.1038/s41422-020-00441-1
  • Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 2022;289:7038–7050. doi:10.1111/febs.16059
  • Cheng Y, Song Y, Chen H, et al. Ferroptosis mediated by lipid reactive oxygen species: a possible causal link of neuroinflammation to neurological Disorders. Oxid Med Cell Longev. 2021;2021:5005136. doi:10.1155/2021/5005136
  • Sharma A, Flora SJS. Positive and negative regulation of ferroptosis and its role in maintaining metabolic and redox homeostasis. Oxid Med Cell Longev. 2021;2021:9074206. doi:10.1155/2021/9074206
  • Jyotsana N, Ta KT, DelGiorno KE. The role of cystine/glutamate antiporter SLC7A11/xCT in the pathophysiology of cancer. Front Oncol. 2022;12. doi:10.3389/fonc.2022.858462
  • Fang X, Ardehali H, Min J, et al. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 2023;20:7–23. doi:10.1038/s41569-022-00735-4
  • Liu L, Liu R, Liu Y, et al. Cystine-glutamate antiporter xCT as a therapeutic target for cancer. Cell Biochem Funct. 2021;39:174–179. doi:10.1002/cbf.3581
  • Shen L, Lin D, Li X, et al. Ferroptosis in acute central nervous system injuries: the future direction? Front Cell Dev Biol. 2020;8. doi:10.3389/fcell.2020.00594
  • Li J, Cao F, Yin H, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11:88. doi:10.1038/s41419-020-2298-2
  • Stockwell BR, Jiang X. The chemistry and biology of ferroptosis. Cell Chem Biol. 2020;27:365–375. doi:10.1016/j.chembiol.2020.03.013
  • Stepanić V, Kučerová-Chlupáčová M. Review and chemoinformatic analysis of ferroptosis modulators with a focus on natural plant products. Molecules. 2023;28. doi:10.3390/molecules28020475
  • Liu L, Wang M, Gong N, et al. Se improves GPX4 expression and SOD activity to alleviate heat-stress-induced ferroptosis-like death in goat mammary epithelial cells. Anim Cells Syst. 2021;25:283–295. doi:10.1080/19768354.2021.1988704
  • Stolwijk JM, Falls-Hubert KC, Searby CC, et al. Simultaneous detection of the enzyme activities of GPx1 and GPx4 guide optimization of selenium in cell biological experiments. Redox Biol. 2020;32:101518. doi:10.1016/j.redox.2020.101518
  • Alim I, Caulfield JT, Chen Y, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 2019;177:1262–1279.e25. doi:10.1016/j.cell.2019.03.032
  • Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575:693–698. doi:10.1038/s41586-019-1707-0
  • Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575:688–692. doi:10.1038/s41586-019-1705-2
  • Hadian K. Ferroptosis suppressor protein 1 (FSP1) and coenzyme Q10 cooperatively suppress ferroptosis. Biochemistry. 2020;59:637–638. doi:10.1021/acs.biochem.0c00030
  • Li W, Liang L, Liu S, et al. FSP1: a key regulator of ferroptosis. Trends Mol Med. 2023;29:753–764. doi:10.1016/j.molmed.2023.05.013
  • Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18:280–296. doi:10.1038/s41571-020-00462-0
  • Kuang G, Wang W, Xiong D, et al. An NADPH sensor that regulates cell ferroptosis. J Transl Med. 2022;20:474. doi:10.1186/s12967-022-03658-3
  • Ding C-KC, Rose J, Sun T, et al. MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis. Nat Metab. 2020;2:270–277. doi:10.1038/s42255-020-0181-1
  • Li F-J, Long H-Z, Zhou Z-W, et al. System Xc−/GSH/GPX4 axis: an important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol. 2022;13:910292.
  • Du Y, Guo Z. Recent progress in ferroptosis: inducers and inhibitors. Cell Death Discov. 2022;8. doi:10.1038/s41420-022-01297-7
  • Zhang L, Zhang J, Jin Y, et al. Nrf2 Is a potential modulator for orchestrating iron homeostasis and redox balance in cancer cells. Front Cell Dev Biol. 2021;9:728172.
  • Li F-J, Long H-Z, Zhou Z-W, et al. System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol. 2022;13:910292.
  • Li Y, Wang X, Huang Z, et al. CISD3 inhibition drives cystine-deprivation induced ferroptosis. Cell Death Dis. 2021;12. doi:10.1038/s41419-021-04128-2
  • Sun Y, Berleth N, Wu W, et al. Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells. Cell Death Dis. 2021;12. doi:10.1038/s41419-021-04306-2
  • Wang D, Tang L, Zhang Y, et al. Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis. 2022;13. doi:10.1038/s41419-022-04927-1
  • Liu M, Zhu W, Pei D. System Xc−: a key regulatory target of ferroptosis in cancer. Invest New Drugs. 2021;39:1123–1131. doi:10.1007/s10637-021-01070-0
  • Jin Y, Zhuang Y, Liu M, et al. Inhibiting ferroptosis: a novel approach for stroke therapeutics. Drug Discov Today. 2021;26:916–930. doi:10.1016/j.drudis.2020.12.020
  • Sekhar KR, Hanna DN, Cyr S, et al. Glutathione peroxidase 4 inhibition induces ferroptosis and mTOR pathway suppression in thyroid cancer. Sci Rep. 2022;12. doi:10.1038/s41598-022-23906-2
  • Xie Y, Hou W, Song X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–379. doi:10.1038/cdd.2015.158
  • Riegman M, Sagie L, Galed C, et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat Cell Biol. 2020;22:1042–1048. doi:10.1038/s41556-020-0565-1
  • Wang P, Lu Y-Q. Ferroptosis: a critical moderator in the life cycle of immune cells. Front Immunol. 2022;13:877634.
  • Brillo V, Chieregato L, Leanza L, et al. Mitochondrial dynamics, ros, and cell signaling: a blended overview. Life. 2021;11. doi:10.3390/life11040332
  • Chen X, Yu C, Kang R, et al. Iron metabolism in ferroptosis. Front Cell Dev Biol. 2020;8:590226.
  • Zhang Y, Wu J, Jiang L, et al. Prospects for the role of ferroptosis in fluorosis. Front Physiol. 2021;12:773055.
  • Strocchi S, Reggiani F, Gobbi G, et al. The multifaceted role of EGLN family prolyl hydroxylases in cancer: going beyond HIF regulation. Oncogene. 2022;41:3665–3679. doi:10.1038/s41388-022-02378-8
  • Mashima R, Okuyama T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol. 2015;6:297–310. doi:10.1016/j.redox.2015.08.006
  • Yan H, Zou T, Tuo Q, et al. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther. 2021;6:49. doi:10.1038/s41392-020-00428-9
  • Yu Y, Yan Y, Niu F, et al. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 2021;7:193. doi:10.1038/s41420-021-00579-w
  • Barayeu U, Schilling D, Eid M, et al. Hydropersulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals. Nat Chem Biol. 2023;19:28–37. doi:10.1038/s41589-022-01145-w
  • Sokoła-Wysoczańska E, Wysoczański T, Wagner J, et al. Polyunsaturated fatty acids and their potential therapeutic role in cardiovascular system disorders – a review. Nutrients. 2018;10. doi:10.3390/nu10101561
  • Schwingshackl L, Hoffmann G. Monounsaturated fatty acids and risk of cardiovascular disease: synopsis of the evidence available from systematic reviews and meta-analyses. Nutrients. 2012;4:1989–2007. doi:10.3390/nu4121989
  • Xie LH, Fefelova N, Pamarthi SH, et al. Molecular mechanisms of ferroptosis and relevance to cardiovascular disease. Cells. 2022;11:2726. doi:10.3390/cells11172726
  • Chen J, Yang L, Geng L, et al. Inhibition of acyl-CoA synthetase long-chain family member 4 facilitates neurological recovery after stroke by regulation ferroptosis. Front Cell Neurosci. 2021;15:632354.
  • Danielli M, Perne L, Jarc Jovičić E, et al. Lipid droplets and polyunsaturated fatty acid trafficking: balancing life and death. Front Cell Dev Biol. 2023;11. doi:10.3389/fcell.2023.1104725
  • Xiao L, Huang H, Fan S, et al. Ferroptosis: a mixed blessing for infectious diseases. Front Pharmacol. 2022;13:992734.
  • Dang Q, Sun Z, Wang Y, et al. Ferroptosis: a double-edged sword mediating immune tolerance of cancer. Cell Death Dis. 2022;13:925. doi:10.1038/s41419-022-05384-6
  • Lu S, Liu S, Hou P, et al. Soft tissue feature tracking based on deep matching network. CMES Comput Model Eng Sci. 2023;136:363–379. doi:10.32604/cmes.2023.025217
  • Schaur RJ, Siems W, Bresgen N, et al. 4-hydroxy-nonenal – a bioactive lipid peroxidation product. Biomolecules. 2015;5:2247–2337. doi:10.3390/biom5042247
  • Murao A, Aziz M, Wang H, et al. Release mechanisms of major DAMPs. Apoptosis. 2021;26:152–162. doi:10.1007/s10495-021-01663-3
  • Chen X, Comish PB, Tang D, et al. Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol. 2021;9. doi:10.3389/fcell.2021.637162
  • Shi J, Lai D, Zuo X, et al. Identification of ferroptosis-related biomarkers for prognosis and immunotherapy in patients with glioma. Front Cell Dev Biol. 2022;10:817643.
  • Feng Z, Qin Y, Huo F, et al. NMN recruits GSH to enhance GPX4-mediated ferroptosis defense in UV irradiation induced skin injury. Biochim Biophys Acta Mol Basis Dis. 2022;1868:166287. doi:10.1016/j.bbadis.2021.166287
  • Otasevic V, Vucetic M, Grigorov I, et al. Ferroptosis in different pathological contexts seen through the eyes of mitochondria. Oxid Med Cell Longev. 2021;2021:5537330. doi:10.1155/2021/5537330
  • Oh S-J, Ikeda M, Ide T, et al. Mitochondrial event as an ultimate step in ferroptosis. Cell Death Discov. 2022;8:414. doi:10.1038/s41420-022-01199-8
  • Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–282. doi:10.1038/s41580-020-00324-8
  • Bi Q, Sun Z, Wu J, et al. Ferroptosis-mediated formation of tumor-promoting immune microenvironment. Front Oncol. 2022;12:868639.
  • Palla G, Fischer DS, Regev A, et al. Spatial components of molecular tissue biology. Nat Biotechnol. 2022;40:308–318. doi:10.1038/s41587-021-01182-1
  • Zhang C-R, Fan C-Q, Zhang L, et al. Chuktabrins A and B, two novel limonoids from the twigs and leaves of Chukrasia tabularis. Org Lett. 2008;10:3183–3186. doi:10.1021/ol800885h
  • Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13:81–90. doi:10.1038/nchembio.2238
  • Weigand I, Schreiner J, Röhrig F, et al. Active steroid hormone synthesis renders adrenocortical cells highly susceptible to type II ferroptosis induction. Cell Death Dis. 2020;11. doi:10.1038/s41419-020-2385-4
  • Eleftheriadis T, Pissas G, Antoniadi G, et al. Cell death patterns due to warm ischemia or reperfusion in renal tubular epithelial cells originating from human, mouse, or the native hibernator hamster. Biology. 2018;7. doi:10.3390/biology7040048
  • Wang Y, Chen Q, Shi C, et al. Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress. Mol Med Rep. 2019;20:4081–4090. doi:10.3892/mmr.2019.10660
  • Ma L, Jiang F, Fan X, et al. Metal–organic-framework-engineered enzyme-mimetic catalysts. Adv Mater. 2020;32:2003065. doi:10.1002/adma.202003065
  • Tang X, Hu W, You W, et al. Exploration of key ferroptosis-related genes and immune infiltration in Crohn’s disease using bioinformatics. Sci Rep. 2023;13:12769. doi:10.1038/s41598-023-40093-w
  • Boutros M, Ahringer J. The art and design of genetic screens: RNA interference. Nat Rev Genet. 2008;9:554–566. doi:10.1038/nrg2364
  • Gao M, Monian P, Pan Q, et al. Ferroptosis is an autophagic cell death process. Cell Res. 2016;26:1021–1032. doi:10.1038/cr.2016.95
  • Cao JY, Poddar A, Magtanong L, et al. A genome-wide haploid genetic screen identifies regulators of glutathione abundance and ferroptosis sensitivity. Cell Rep. 2019;26:1544–1556.e8. doi:10.1016/j.celrep.2019.01.043
  • Mou Y, Wang J, Wu J, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12. doi:10.1186/s13045-019-0720-y
  • Pepper SE, Borkowski M, Richmann MK, et al. Determination of ferrous and ferric iron in aqueous biological solutions. Anal Chim Acta. 2010;663:172–177. doi:10.1016/j.aca.2010.01.056
  • Nan X, Huyan Y, Li H, et al. Reaction-based fluorescent probes for Hg2+, Cu2 + and Fe3+/Fe2 +. Coord Chem Rev. 2021;426:213580. doi:10.1016/j.ccr.2020.213580
  • Reynard B, Fellah C, McCammon C. Iron oxidation state in serpentines and magnesian chlorites of subduction-related rocks. Eur J Mineral. 2022;34:645–656. doi:10.5194/ejm-34-645-2022
  • Zhang X, Ma G, Wei W. Simulation of nanoparticles interacting with a cell membrane: probing the structural basis and potential biomedical application. NPG Asia Mater. 2021;13:52. doi:10.1038/s41427-021-00320-0
  • Abdelkhalek A, El-Latif MA, Ibrahim H, et al. Controlled synthesis of graphene oxide/silica hybrid nanocomposites for removal of aromatic pollutants in water. Sci Rep. 2022;12:7060. doi:10.1038/s41598-022-10602-4
  • Herbison CE, Thorstensen K, Chua ACG, et al. The role of transferrin receptor 1 and 2 in transferrin-bound iron uptake in human hepatoma cells. Am J Physiol Cell Physiol. 2009;297:C1567–C1575. doi:10.1152/ajpcell.00649.2008
  • Sun X, Fan J, Fu C, et al. WS2 and MoS2 biosensing platforms using peptides as probe biomolecules. Sci Rep. 2017;7:10290. doi:10.1038/s41598-017-10221-4
  • Chen T, Zou H, Wu X, et al. Nanozymatic antioxidant system based on MoS2 nanosheets. ACS Appl Mater Interfaces. 2018;10:12453–12462. doi:10.1021/acsami.8b01245
  • Wang F, Gómez-Sintes R, Boya P. Lysosomal membrane permeabilization and cell death. Traffic. 2018;19:918–931. doi:10.1111/tra.12613
  • Li A, Gao M, Liu B, et al. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease. Cell Death Dis. 2022;13:444. doi:10.1038/s41419-022-04906-6
  • Gao M, Yi J, Zhu J, et al. Role of mitochondria in ferroptosis. Mol Cell. 2019;73:354–363.e3. doi:10.1016/j.molcel.2018.10.042
  • Zhang D, Cui P, Dai Z, et al. Tumor microenvironment responsive FePt/MoS2 nanocomposites with chemotherapy and photothermal therapy for enhancing cancer immunotherapy. Nanoscale. 2019;11:19912–19922. doi:10.1039/C9NR05684J
  • Huang K-J, Wei Y-H, Chiu Y-C, et al. Assessment of zero-valent iron-based nanotherapeutics for ferroptosis induction and resensitization strategy in cancer cells. Biomater Sci. 2019;7:1311–1322. doi:10.1039/C8BM01525B
  • Zhang C, Liu Z, Zhang Y, et al. ‘Iron free’ zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis. Cell Death Dis. 2020;11. doi:10.1038/s41419-020-2384-5
  • Ren J-X, Sun X, Yan X-L, et al. Ferroptosis in neurological diseases. Front Cell Neurosci. 2020;14:218.
  • Kwok JC, Richardson DR. The iron metabolism of neoplastic cells: alterations that facilitate proliferation? Crit Rev Oncol Hematol. 2002;42:65–78. doi:10.1016/S1040-8428(01)00213-X
  • Hassannia B, Wiernicki B, Ingold I, et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest. 2018;128:3341–3355. doi:10.1172/JCI99032
  • Xu Y, Qin Z, Ma J, et al. Recent progress in nanotechnology based ferroptotic therapies for clinical applications. Eur J Pharmacol. 2020;880. doi:10.1016/j.ejphar.2020.173198
  • Zhang Y, Tan H, Daniels JD, et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol. 2019;26:623–633.e9. doi:10.1016/j.chembiol.2019.01.008
  • Ma P, Xiao H, Yu C, et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett. 2017;17:928–937. doi:10.1021/acs.nanolett.6b04269
  • Cascione M, De Matteis V, Leporatti S, et al. The new frontiers in neurodegenerative diseases treatment: liposomal-based strategies. Front Bioeng Biotechnol. 2020;8. doi:10.3389/fbioe.2020.566767
  • Wu J, Wang Y, Jiang R, et al. Ferroptosis in liver disease: new insights into disease mechanisms. Cell Death Discov. 2021;7:276. doi:10.1038/s41420-021-00660-4
  • Durães F, Pinto M, Sousa E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals. 2018;11. doi:10.3390/ph11020044
  • Akhtar A, Andleeb A, Waris TS, et al. Neurodegenerative diseases and effective drug delivery: a review of challenges and novel therapeutics. J Controlled Release. 2021;330:1152–1167. doi:10.1016/j.jconrel.2020.11.021
  • Ou M, Jiang Y, Ji Y, et al. Role and mechanism of ferroptosis in neurological diseases. Mol Metab. 2022;61. doi:10.1016/j.molmet.2022.101502
  • Norat P, Soldozy S, Sokolowski JD, et al. Mitochondrial dysfunction in neurological disorders: exploring mitochondrial transplantation. NPJ Regen Med. 2020;5:22. doi:10.1038/s41536-020-00107-x
  • Al-Chalabi A. Preventing neurodegenerative disease. Brain. 2021;144:1279–1280. doi:10.1093/brain/awab151
  • Sheikh S, Haque E, Mir SS. Neurodegenerative diseases: multifactorial conformational diseases and their therapeutic interventions. J Neurodegener Dis. 2013;2013:563481. doi:10.1155/2013/563481
  • Gan L, Cookson MR, Petrucelli L, et al. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci. 2018;21:1300–1309. doi:10.1038/s41593-018-0237-7
  • Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9. doi:10.1101/cshperspect.a028035
  • Davenport F, Gallacher J, Kourtzi Z, et al. Neurodegenerative disease of the brain: a survey of interdisciplinary approaches. J R Soc Interface. 2023;20. doi:10.1098/rsif.2022.0406
  • Zheng H, Jiang J, Xu S, et al. Nanoparticle-induced ferroptosis: detection methods, mechanisms and applications. Nanoscale. 2021;13:2266–2285. doi:10.1039/d0nr08478f
  • Sheikh S, Haque E, Mir SS. Neurodegenerative diseases: multifactorial conformational diseases and their therapeutic interventions. J Neurodegener Dis. 2013;2013:563481. doi:10.1155/2013/563481
  • Knopman DS, Amieva H, Petersen RC, et al. Alzheimer disease. Nat Rev Dis Primers. 2021;7:33. doi:10.1038/s41572-021-00269-y
  • Li X, Feng X, Sun X, et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front Aging Neurosci. 2022;14:937486.
  • Zhang J, Shen Q, Ma Y, et al. Calcium homeostasis in Parkinson’s disease: from pathology to treatment. Neurosci Bull. 2022;38:1267–1270. doi:10.1007/s12264-022-00899-6
  • Zhang K, Yang Y, Ge H, et al. Neurogenesis and proliferation of neural stem/progenitor cells conferred by artesunate via FOXO3a/p27Kip1 axis in mouse stroke model. Mol Neurobiol. 2022;59:4718–4729. doi:10.1007/s12035-021-02710-5
  • Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer’s disease pathology. Mol Neurodegener. 2021;16:59. doi:10.1186/s13024-021-00465-0
  • Bellenguez C, Küçükali F, Jansen IE, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet. 2022;54:412–436. doi:10.1038/s41588-022-01024-z
  • Wang H, Wang K, Xue Q, et al. Transcranial alternating current stimulation for treating depression: a randomized controlled trial. Brain. 2022;145:83–91. doi:10.1093/brain/awab252
  • Abubakar MB, Sanusi KO, Ugusman A, et al. Alzheimer’s disease: an update and insights into pathophysiology. Front Aging Neurosci. 2022;14. doi:10.3389/fnagi.2022.742408
  • Gauvrit T, Benderradji H, Buée L, et al. Early-life environment influence on late-onset Alzheimer’s disease. Front Cell Dev Biol. 2022;10. doi:10.3389/fcell.2022.834661
  • Tahami Monfared AA, Byrnes MJ, White LA, et al. Alzheimer’s disease: epidemiology and clinical progression. Neurol Ther. 2022;11:553–569. doi:10.1007/s40120-022-00338-8
  • Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules. 2020;25. doi:10.3390/MOLECULES25245789
  • König T, Stögmann E. Genetics of Alzheimer’s disease. Wien Med Wochenschr. 2021;171:249–256. doi:10.1007/s10354-021-00819-9
  • Bateman RJ, Xiong C, Benzinger TLS, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804. doi:10.1056/nejmoa1202753
  • Jagaran K, Singh M. Nanomedicine for neurodegenerative disorders: focus on Alzheimer’s and Parkinson’s diseases. Int J Mol Sci. 2021;22. doi:10.3390/ijms22169082
  • Guo T, Zhang D, Zeng Y, et al. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener. 2020;15. doi:10.1186/s13024-020-00391-7
  • Eitan E, Hutchison ER, Marosi K, et al. Extracellular vesicle-associated aβ mediates trans-neuronal bioenergetic and ca2+-handling deficits in Alzheimer’s disease models. NPJ Aging Mech Dis. 2016;2. doi:10.1038/npjamd.2016.19
  • Zhang M, Mao X, Yu Y, et al. Nanomaterials for reducing amyloid cytotoxicity. Adv Mater. 2013;25:3780–3801. doi:10.1002/adma.201301210
  • Chen K, Jiang X, Wu M, et al. Ferroptosis, a potential therapeutic target in Alzheimer’s disease. Front Cell Dev Biol. 2021;9:704298.
  • Di Domenico F, Tramutola A, Butterfield DA. Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of Alzheimer disease and other selected age-related neurodegenerative disorders. Free Radic Biol Med. 2017;111:253–261. doi:10.1016/j.freeradbiomed.2016.10.490
  • Peña-Bautista C, Baquero M, Vento M, et al. Free radicals in Alzheimer’s disease: lipid peroxidation biomarkers. Clin Chim Acta. 2019;491:85–90. doi:10.1016/j.cca.2019.01.021
  • Zhang C, Rodriguez C, Spaulding J, et al. Age-dependent and tissue-related glutathione redox status in a mouse model of Alzheimer’s disease. J Alzheimer’s Dis. 2012;28:655–666. doi:10.3233/JAD-2011-111244
  • He L, He T, Farrar S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017;44:532–553. doi:10.1159/000485089
  • Corey-Bloom J. The ABC of Alzheimer’s disease: cognitive changes and their management in Alzheimer’s disease and related dementias. Int Psychogeriatr. 2002;14:51–75. doi:10.1017/S1041610203008664
  • Tu J, Yan J, Liu J, et al. Iron deposition in the precuneus is correlated with mild cognitive impairment in patients with cerebral microbleeds: a quantitative susceptibility mapping study. Front Neurosci. 2022;16:944709.
  • Hampel H, Hardy J, Blennow K, et al. The amyloid-β pathway in Alzheimer’s disease. Mol Psychiatry. 2021;26:5481–5503. doi:10.1038/s41380-021-01249-0
  • Wang F, Wang J, Shen Y, et al. Iron dyshomeostasis and ferroptosis: a new Alzheimer’s disease hypothesis? Front Aging Neurosci. 2022;14:830569.
  • Yan N, Zhang J. Iron metabolism, ferroptosis, and the links with Alzheimer’s disease. Front Neurosci. 2020;13:1443.
  • Ou M, Jiang Y, Ji Y, et al. Role and mechanism of ferroptosis in neurological diseases. Mol Metab. 2022;61:101502. doi:10.1016/j.molmet.2022.101502
  • Honarpisheh P, Reynolds CR, Conesa MPB, et al. Dysregulated gut homeostasis observed prior to the accumulation of the brain amyloid-β in Tg2576 mice. Int J Mol Sci. 2020;21. doi:10.3390/ijms21051711
  • Lee S, Yang M, Kim J, et al. Trimethyltin-induced hippocampal neurodegeneration: a mechanism-based review. Brain Res Bull. 2016;125:187–199. doi:10.1016/j.brainresbull.2016.07.010
  • Chuprin J, Buettner H, Seedhom MO, et al. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol. 2023;20:192–206. doi:10.1038/s41571-022-00721-2
  • Porsteinsson AP, Isaacson RS, Knox S, et al. Diagnosis of early Alzheimer’s disease: clinical practice in 2021. J Prev Alzheimer’s Dis. 2021;8:371–386. doi:10.14283/jpad.2021.23
  • Zhang T, Zhang Q, Tian J-H, et al. Perfluorocarbon-based nanomedicine: emerging strategy for diagnosis and treatment of diseases. MRS Commun. 2018;8:303–313. doi:10.1557/mrc.2018.49
  • Zhang G, Yuan C, Sun Y. Effect of selective encapsulation of hydroxypropyl-β-cyclodextrin on components and antibacterial properties of star anise essential oil. Molecules. 2018;23. doi:10.3390/molecules23051126
  • Fernández-Bertólez N, Costa C, Bessa MJ, et al. Assessment of oxidative damage induced by iron oxide nanoparticles on different nervous system cells. Mutat Res/Genet Toxicol Environ Mutagen. 2019;845:402989. doi:10.1016/j.mrgentox.2018.11.013
  • Morris G, Berk M, Carvalho AF, et al. Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res. 2018;341:154–175. doi:10.1016/j.bbr.2017.12.036
  • Maher P. Potentiation of glutathione loss and nerve cell death by the transition metals iron and copper: implications for age-related neurodegenerative diseases. Free Radic Biol Med. 2018;115:92–104. doi:10.1016/j.freeradbiomed.2017.11.015
  • Hirata Y, Yamada C, Ito Y, et al. Novel oxindole derivatives prevent oxidative stress-induced cell death in mouse hippocampal HT22 cells. Neuropharmacology. 2018;135:242–252. doi:10.1016/j.neuropharm.2018.03.015
  • Wang J, Wang F, Mai D, et al. Molecular mechanisms of glutamate toxicity in Parkinson’s disease. Front Neurosci. 2020;14:585584.
  • Simões AP, Silva CG, Marques JM, et al. Glutamate-induced and NMDA receptor-mediated neurodegeneration entails P2Y1 receptor activation. Cell Death Dis. 2018;9:297. doi:10.1038/s41419-018-0351-1
  • Kostandy BB. The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci. 2012;33:223–237. doi:10.1007/s10072-011-0828-5
  • Yagami T, Yamamoto Y, Koma H. Pathophysiological roles of intracellular proteases in neuronal development and neurological diseases. Mol Neurobiol. 2019;56:3090–3112. doi:10.1007/s12035-018-1277-4
  • Fischer W, Currais A, Liang Z, et al. Old age-associated phenotypic screening for Alzheimer’s disease drug candidates identifies sterubin as a potent neuroprotective compound from Yerba santa. Redox Biol. 2019;21:101089. doi:10.1016/j.redox.2018.101089
  • Gunesch S, Hoffmann M, Kiermeier C, et al. 7-O-esters of taxifolin with pronounced and overadditive effects in neuroprotection, anti-neuroinflammation, and amelioration of short-term memory impairment in vivo. Redox Biol. 2020;29:101378. doi:10.1016/j.redox.2019.101378
  • Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–2093. doi:10.1126/science.1104742
  • Cong L, Dong X, Wang Y, et al. On the role of synthesized hydroxylated chalcones as dual functional amyloid-β aggregation and ferroptosis inhibitors for potential treatment of Alzheimer’s disease. Eur J Med Chem. 2019;166:11–21. doi:10.1016/j.ejmech.2019.01.039
  • Ates G, Goldberg J, Currais A, et al. CMS121, a fatty acid synthase inhibitor, protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer’s disease. Redox Biol. 2020;36:101648. doi:10.1016/j.redox.2020.101648
  • Wang L, Cao Y, Tang Q, et al. Role of the blood-brain barrier in rabies virus infection and protection. Protein Cell. 2013;4:901–903. doi:10.1007/s13238-013-3918-8
  • Hao R, Sun B, Yang L, et al. RVG29-modified microRNA-loaded nanoparticles improve ischemic brain injury by nasal delivery. Drug Deliv. 2020;27:772–781. doi:10.1080/10717544.2020.1760960
  • Dong K, Wang Z, Zhang Y, et al. Metal–organic framework-based nanoplatform for intracellular environment-responsive endo/lysosomal escape and enhanced cancer therapy. ACS Appl Mater Interfaces. 2018;10:31998–32005. doi:10.1021/acsami.8b11972
  • Tansey MG, Wallings RL, Houser MC, et al. Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol. 2022;22:657–673. doi:10.1038/s41577-022-00684-6
  • Chen F, Chen S, Si A, et al. The long-term trend of Parkinson’s disease incidence and mortality in China and a Bayesian projection from 2020 to 2030. Front Aging Neurosci. 2022;14:973310.
  • Aarsland D, Batzu L, Halliday GM, et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 2021;7:47. doi:10.1038/s41572-021-00280-3
  • Ou Z, Pan J, Tang S, et al. Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Front Public Health. 2021;9:776847.
  • Mesman S, Smidt MP. Acquisition of the midbrain dopaminergic neuronal identity. Int J Mol Sci. 2020;21:1–20. doi:10.3390/ijms21134638
  • Carmichael K, Sullivan B, Lopez E, et al. Diverse midbrain dopaminergic neuron subtypes and implications for complex clinical symptoms of Parkinson’s disease. Ageing Neurodegener Dis. 2021. doi:10.20517/and.2021.07
  • Aman Y. Selective loss among dopaminergic neurons in Parkinson’s disease. Nat Aging. 2022;2:462. doi:10.1038/s43587-022-00242-8
  • Wu L, Liu M, Liang J, et al. Ferroptosis as a new mechanism in Parkinson’s disease therapy using traditional Chinese medicine. Front Pharmacol. 2021;12:659584.
  • Mobarra N, Shanaki M, Ehteram H, et al. A review on iron chelators in treatment of iron overload syndromes. Int J Hematol Oncol Stem Cell Res. 2016;10:239.
  • Feng G, Zhang Z, Bao Q, et al. Protective effect of chinonin in MPTP-induced C57BL/6 mouse model of Parkinson’s disease. Pharm Bull. 2014;37(8):1301–1307. doi:10.1248/bpb.b14-00128
  • Takahashi S, Hisatsune A, Kurauchi Y, et al. Polysulfide protects midbrain dopaminergic neurons from MPP+-induced degeneration via enhancement of glutathione biosynthesis. J Pharmacol Sci. 2018;137:47–54. doi:10.1016/j.jphs.2018.04.004
  • Everett J, Brooks J, Lermyte F, et al. Iron stored in ferritin is chemically reduced in the presence of aggregating Aβ(1-42). Sci Rep. 2020;10:10332. doi:10.1038/s41598-020-67117-z
  • Tian Y, Lu J, Hao X, et al. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics. 2020;17:1796–1812. doi:10.1007/s13311-020-00929-z
  • Zhang P, Chen L, Zhao Q, et al. Ferroptosis was more initial in cell death caused by iron overload and its underlying mechanism in Parkinson’s disease. Free Radic Biol Med. 2020;152:227–234. doi:10.1016/j.freeradbiomed.2020.03.015
  • Monge-Fuentes V, Biolchi Mayer A, Lima MR, et al. Dopamine-loaded nanoparticle systems circumvent the blood–brain barrier restoring motor function in mouse model for Parkinson’s disease. Sci Rep. 2021;11:15185. doi:10.1038/s41598-021-94175-8
  • Tryphena KP, Singh G, Jain N, et al. Integration of miRNA’s theranostic potential with nanotechnology: promises and challenges for Parkinson’s disease therapeutics. Mech Ageing Dev. 2023;211:111800. doi:10.1016/j.mad.2023.111800
  • Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip. 2012;12:1784–1792. doi:10.1039/C2LC40094D
  • Guo X, Shi Y, Liu D, et al. Clinical updates on gliomas and implications of the 5th edition of the WHO classification of central nervous system tumors. Front Oncol. 2023;13:1131642.
  • Rong L, Li N, Zhang Z. Emerging therapies for glioblastoma: current state and future directions. J Exp Clin Cancer Res. 2022;41:142. doi:10.1186/s13046-022-02349-7
  • Schaff LR, Mellinghoff IK. Glioblastoma and other primary brain malignancies in adults: a review. JAMA. 2023;329:574–587. doi:10.1001/jama.2023.0023
  • Moschetta M, Trevisani M, Castagnola V, et al. Chapter 19 – nanotechnology-based approaches in glioblastoma treatment: how can the dual blood-brain/tumor barriers be overcome? In: Vitorino C, Balaña C, Cabral C, editors. New insights into glioblastoma. Academic Press; 2023. p. 435–475. doi:10.1016/B978-0-323-99873-4.00020-7
  • Wu W, Klockow JL, Zhang M, et al. Glioblastoma multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol Res. 2021;171:105780. doi:10.1016/j.phrs.2021.105780
  • Oishi T, Koizumi S, Kurozumi K. Molecular mechanisms and clinical challenges of glioma invasion. Brain Sci. 2022;12. doi:10.3390/brainsci12020291
  • An Z, Aksoy O, Zheng T, et al. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene. 2018;37:1561–1575. doi:10.1038/s41388-017-0045-7
  • Keller S, Schmidt MHH. EGFR and EGFRvIII promote angiogenesis and cell invasion in glioblastoma: combination therapies for an effective treatment. Int J Mol Sci. 2017;18. doi:10.3390/ijms18061295
  • Banerjee K, Núñez FJ, Haase S, et al. Current approaches for glioma gene therapy and virotherapy. Front Mol Neurosci. 2021;14. doi:10.3389/fnmol.2021.621831
  • Li R, Wang H, Liang Q, et al. Radiotherapy for glioblastoma: clinical issues and nanotechnology strategies. Biomater Sci. 2022;10:892–908. doi:10.1039/D1BM01401C
  • Miretti M, González Graglia MA, Suárez AI, et al. Photodynamic therapy for glioblastoma: a light at the end of the tunnel. J Photochem Photobiol. 2023;13:100161. doi:10.1016/j.jpap.2023.100161
  • Liu S, Shi W, Zhao Q, et al. Progress and prospect in tumor treating fields treatment of glioblastoma. Biomed Pharmacother. 2021;141:111810. doi:10.1016/j.biopha.2021.111810
  • Slavkov D, Hadzhiyanev A, Slavkova S. Tumor treating fields: a new treatment for glioblastoma. Biotechnol Biotechnol Equip. 2023;37:58–63. doi:10.1080/13102818.2022.2155567
  • Yasinjan F, Xing Y, Geng H, et al. Immunotherapy: a promising approach for glioma treatment. Front Immunol. 2023;14. doi:10.3389/fimmu.2023.1255611
  • Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 2023;24:560–575. doi:10.1038/s41580-023-00585-z
  • Liu Y, Lei H, Zhang W, et al. Pyroptosis in renal inflammation and fibrosis: current knowledge and clinical significance. Cell Death Dis. 2023;14:472. doi:10.1038/s41419-023-06005-6
  • Zhang Y, Fu X, Jia J, et al. Glioblastoma therapy using codelivery of cisplatin and glutathione peroxidase targeting siRNA from iron oxide nanoparticles. ACS Appl Mater Interfaces. 2020;12:43408–43421. doi:10.1021/acsami.0c12042
  • Zhou L, Liu Y, Sun H, et al. Usefulness of enzyme-free and enzyme-resistant detection of complement component 5 to evaluate acute myocardial infarction. Sens Actuators B Chem. 2022;369:132315. doi:10.1016/j.snb.2022.132315
  • Hao P, Li H, Zhou L, et al. Serum metal Ion-induced cross-linking of photoelectrochemical peptides and circulating proteins for evaluating cardiac ischemia/reperfusion. ACS Sens. 2022;7:775–783. doi:10.1021/acssensors.1c02305
  • Wang X, Zhu K, Zhang L, et al. Preparation of high-quality glass-ceramics entirely derived from fly ash of municipal solid waste incineration and coal enhanced with pressure pretreatment. J Clean Prod. 2021;324:129021. doi:10.1016/j.jclepro.2021.129021
  • Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20:689–709. doi:10.1038/s41573-021-00233-1
  • Cheung EC, Vousden KH. The role of ROS in tumour development and progression. Nat Rev Cancer. 2022;22:280–297. doi:10.1038/s41568-021-00435-0
  • Xu Y, Zhang F, Zhai W, et al. Unraveling of advances in 3D-printed polymer-based bone scaffolds. Polymers. 2022;14. doi:10.3390/polym14030566
  • Zhao L-X, Gong Z-Q, Zhang Q, et al. Graphdiyne nanoplatforms for photothermal-ferroptosis combination therapy against glioblastoma. J Controlled Release. 2023;359:12–25. doi:10.1016/j.jconrel.2023.05.035
  • Chi H, Li B, Wang Q, et al. Opportunities and challenges related to ferroptosis in glioma and neuroblastoma. Front Oncol. 2023;13:1065994.
  • Neganova ME, Aleksandrova YR, Sukocheva OA, et al. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol. 2022;86:805–833. doi:10.1016/j.semcancer.2022.06.011
  • Ezra Manicum A-L, Sargazi S, Razzaq S, et al. Nano-immunotherapeutic strategies for targeted RNA delivery: emphasizing the role of monocyte/macrophages as nanovehicles to treat glioblastoma multiforme. J Drug Deliv Sci Technol. 2022;71:103288. doi:10.1016/j.jddst.2022.103288
  • Wang J, Yang J, Liu K, et al. Tumor targeted cancer membrane-camouflaged ultra-small Fe nanoparticles for enhanced collaborative apoptosis and ferroptosis in glioma. Mater Today Bio. 2023;22. doi:10.1016/j.mtbio.2023.100780
  • Yao Y, Ji P, Chen H, et al. Ferroptosis-based drug delivery system as a new therapeutic opportunity for brain tumors. Front Oncol. 2023;13:1084289.
  • Mansur AAP, Mansur HS, Carvalho SM. Engineered hybrid nanozyme catalyst cascade based on polysaccharide-enzyme-magnetic iron oxide nanostructures for potential application in cancer therapy. Catal Today. 2022;388–389:187–198. doi:10.1016/j.cattod.2020.06.083
  • Shen Z, Liu T, Li Y, et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano. 2018;12:11355–11365. doi:10.1021/acsnano.8b06201
  • Hambright WS, Fonseca RS, Chen L, et al. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol. 2017;12:8–17. doi:10.1016/j.redox.2017.01.021