Publication Cover
Redox Report
Communications in Free Radical Research
Volume 28, 2023 - Issue 1
528
Views
0
CrossRef citations to date
0
Altmetric
Research Article

L-methionine protects against nephrotoxicity induced by methotrexate through modulation of redox status and inflammation

ORCID Icon, &

References

  • Olsen NJ, Murray LM. Antiproliferative effects of methotrexate on peripheral blood mononuclear cells. Arthritis Rheum. 1989;32(4):378–385.
  • Chan ES, Cronstein BN. Methotrexate: how does it really work? Nat Rev Rheumatol. 2010;6(3):175–178.
  • Herman S, Zurgil N, Deutsch M. Low-dose methotrexate induces apoptosis with reactive oxygen species involvement in T lymphocytic cell lines to a greater extent than in monocytic lines. Inflamm Res. 2005;54(7):273–280.
  • Shariatifar H, Ranjbarian F, Hajiahmadi F, et al. A comprehensive review on methotrexate containing nanoparticles; an appropriate tool for cancer treatment. Mol Biol Rep. 2022;49(11):11049–11060.
  • Taran Z, Yektaniroumand Digehsaraei S, Salouti M, et al. Methotrexate loaded in alginate beads for controlled drug release against breast cancer. Gene. 2023;851:146941.
  • Cutolo M, Sulli A, Pizzorni C, et al. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis. 2001;60(8):729–735.
  • Treon SP, Chabner BA. Concepts in use of high-dose methotrexate therapy. Clin Chem. 1996;42(8 pt 2):1322–1329.
  • Lucas CJ, Dimmitt SB, Martin JH. Optimising low-dose methotrexate for rheumatoid arthritis-a review. Br J Clin Pharmacol. 2019;85(10):2228–2234.
  • Mahmoud AM, Hussein OE, Abd El-Twab SM, et al. Ferulic acid protects against methotrexate nephrotoxicity via activation of Nrf2/ARE/HO-1 signaling and PPARgamma, and suppression of NF-kappaB/NLRP3 inflammasome axis. Food Funct. 2019;10(8):4593–4607.
  • Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. Oncologist. 2006;11(6):694–703.
  • Heidari R, Ahmadi A, Mohammadi H, et al. Mitochondrial dysfunction and oxidative stress are involved in the mechanism of methotrexate-induced renal injury and electrolytes imbalance. Biomed Pharmacother. 2018;107:834–840.
  • El-Twab SM A, Hussein OE, Hozayen WG, et al. Chicoric acid prevents methotrexate-induced kidney injury by suppressing NF-kappaB/NLRP3 inflammasome activation and up-regulating Nrf2/ARE/HO-1 signaling. Inflamm Res. 2019;68(6):511–523.
  • Dong X, Zhou Z, Wang L, et al. Increasing the availability of threonine, isoleucine, valine, and leucine relative to lysine while maintaining an ideal ratio of lysine:methionine alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription. J Dairy Sci. 2018;101(6):5502–5514.
  • Loenen WA. S-adenosylmethionine: jack of all trades and master of everything? Biochem Soc Trans. 2006;34(Pt 2):330–333.
  • Campbell K, Vowinckel J, Keller MA, et al. Methionine metabolism alters oxidative stress resistance via the pentose phosphate pathway. Antioxid Redox Signal. 2016;24(10):543–547.
  • Lourenco Dos Santos S, Petropoulos I, Friguet B. The oxidized protein repair enzymes methionine sulfoxide reductases and their roles in protecting against oxidative stress, in ageing and in regulating protein function. Antioxidants. 2018;7(12):191.
  • Wu PF, Long LH, Zeng JH, et al. Protection of L-methionine against H2O2-induced oxidative damage in mitochondria. Food Chem Toxicol. 2012;50(8):2729–2735.
  • Martinez Y, Li X, Liu G, et al. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids. 2017;49(12):2091–2098.
  • Unnikrishnan MK, Rao MN. Antiinflammatory activity of methionine, methionine sulfoxide and methionine sulfone. Agents Actions. 1990;31(1–2):110–112.
  • Navik U, Sheth VG, Sharma N, et al. L-Methionine supplementation attenuates high-fat fructose diet-induced non-alcoholic steatohepatitis by modulating lipid metabolism, fibrosis, and inflammation in rats. Food Funct. 2022;13(9):4941–4953.
  • Elsawy H, Alzahrani AM, Alfwuaires M, et al. Nephroprotective effect of naringin in methotrexate induced renal toxicity in male rats. Biomed Pharmacother. 2021;143:112180.
  • Lin MT, Ko JL, Liu TC, et al. Protective effect of D-methionine on body weight loss, anorexia, and nephrotoxicity in cisplatin-induced chronic toxicity in rats. Integr Cancer Ther. 2018;17(3):813–824.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–358.
  • Levine RL, Garland D, Oliver CN, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–478.
  • Green DE, Vande Zande H. On the enzymic mechanism of oxidative phosphorylation. Proc Natl Acad Sci U S A. 1982;79(4):1064–1068.
  • Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882–888.
  • Anderson ME. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985;113:548–555.
  • Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70(1):158–169.
  • Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984;21(2):130–132.
  • Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126.
  • Hamed KM, Dighriri IM, Baomar AF, et al. Overview of methotrexate toxicity: a comprehensive literature review. Cureus. 2022;14(9):e29518.
  • Kolli VK, Abraham P, Isaac B, et al. Neutrophil infiltration and oxidative stress may play a critical role in methotrexate-induced renal damage. Chemotherapy. 2009;55(2):83–90.
  • King TJ, Georgiou KR, Cool JC, et al. Methotrexate chemotherapy promotes osteoclast formation in the long bone of rats via increased pro-inflammatory cytokines and enhanced NF-kappaB activation. Am J Pathol. 2012;181(1):121–129.
  • Olsen NJ, Spurlock CF, Aune TM. Methotrexate induces production of IL-1 and IL-6 in the monocytic cell line U937. Arthritis Res Ther. 2014;16(1):R17.
  • Derakhshanfar A, Bidadkhosh A, Hashempour Sadeghian M. L-methionine attenuates gentamicin nephrotoxicity in male Wistar rat: pathological and biochemical findings. Iranian J Vet Res. 2009;10(429):323–328.
  • Azad MAK, Sivanesan S, Wang J, et al. Methionine ameliorates Polymyxin-induced nephrotoxicity by attenuating cellular oxidative Stress. Antimicrob Agents Chemother. 2018;62(1):e01254–17.
  • Patel NN, Ghodasara DJ, Pandey S, et al. Subacute toxicopathological studies of methotrexate in Wistar rats. Veterinary World. 2014;7(7):489–495.
  • Bonventre JV. Kidney injury molecule-1 (KIM-1): a specific and sensitive biomarker of kidney injury. Scand J Clin Lab Investig Suppl. 2008;241:78–83.
  • Mahmoud AM, Germoush MO, Al-Anazi KM, et al. Commiphora molmol protects against methotrexate-induced nephrotoxicity by up-regulating Nrf2/ARE/HO-1 signaling. Biomed Pharmacother. 2018;106:499–509.
  • Morsy MA, El-Sheikh AAK, Abdel-Hafez SMN, et al. Paeonol protects against methotrexate-induced nephrotoxicity via upregulation of P-gp expression and inhibition of TLR4/NF-κB pathway. Front Pharmacol. 2022;13:774387.
  • Ragab D, Abdalla DM, El-Abhar HS. Cilostazol renoprotective effect: modulation of PPAR-gamma, NGAL, KIM-1 and IL-18 underlies its novel effect in a model of ischemia-reperfusion. PLoS One. 2014;9:e95313.
  • Messmann R, Allegra C, Chabner B, et al. Cancer chemotherapy and biotherapy. Philadelphia (PA): Lippincott Williams & Wilkins; 2001.
  • Shah SV. Role of reactive oxygen metabolites in experimental glomerular disease. Kidney Int. 1989;35(5):1093–1106.
  • Nath KA, Fischereder M, Hostetter TH. The role of oxidants in progressive renal injury. Kidney Int Suppl. 1994;45:S111–S115.
  • Ali BH, Al Moundhri MS. Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol. 2006;44(8):1173–1183.
  • Eirin A, Textor SC, Lerman LO. Emerging concepts for patients with treatment-resistant hypertension. Trends Cardiovasc Med. 2016;26(8):700–706.
  • Younis NS, Elsewedy HS, Shehata TM, et al. Geraniol averts methotrexate-induced acute kidney injury via Keap1/Nrf2/HO-1 and MAPK/NF-kappaB pathways. Curr Issues Mol Biol. 2021;43(3):1741–1755.
  • Pérez de la Lastra JM, Juan CA, Plou FJ, et al. The nitration of proteins, lipids and DNA by peroxynitrite derivatives-chemistry involved and biological relevance. Stresses. 2022;2(1):53–64.
  • Craven PA, Melhem MF, De Rubertis FR. Thromboxane in the pathogenesis of glomerular injury in diabetes. Kidney Int. 1992;42(4):937–946.
  • Njaa LR, Utne F, Braekkan OR. Antioxidant properties of methionine esters. Nature. 1968;218(5141):571–572.
  • Wang Z, Liang M, Li H, et al. L-methionine activates Nrf2-ARE pathway to induce endogenous antioxidant activity for depressing ROS-derived oxidative stress in growing rats. J Sci Food Agric. 2019;99(10):4849–4862.
  • Gantner BN, LaFond KM, Bonini MG. Nitric oxide in cellular adaptation and disease. Redox Biol. 2020;34:101550.
  • Aladaileh SH, Hussein OE, Abukhalil MH, et al. Formononetin upregulates Nrf2/HO-1 signaling and prevents oxidative stress, inflammation, and kidney injury in methotrexate-induced rats. Antioxidants. 2019;8(10):430.
  • Payabvash S, Ghahremani M, Goliaei A, et al. Nitric oxide modulates glutathione synthesis during endotoxemia. Free Radical Biol Med. 2006;41(12):1817–1828.
  • Simmons EM, Himmelfarb J, Sezer MT, et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int. 2004;65(4):1357–1365.
  • Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford: Oxford University Press; 2015.
  • Paul M, Hemshekhar M, Thushara RM, et al. Methotrexate promotes platelet apoptosis via JNK-mediated mitochondrial damage: alleviation by N-acetylcysteine and N-acetylcysteine amide. PLoS One. 2015;10(6):e0127558.
  • Fiechtner JJ, Miller DR, Starkebaum G. Reversal of neutropenia with methotrexate treatment in patients with Felty’s syndrome. Correlation of response with neutrophil-reactive IgG. Arthritis Rheum. 1989;32(2):194–201.
  • Ueda Y, Yang K, Foster SJ, et al. Inflammation controls B lymphopoiesis by regulating chemokine CXCL12 expression. J Exp Med. 2004;199(1):47–58.