Publication Cover
Redox Report
Communications in Free Radical Research
Volume 28, 2023 - Issue 1
594
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of oxidative stress level: reactive oxygen species, reduced glutathione, and D-dimer in patients hospitalized due to COVID-19

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Raman R, Patel KJ, Ranjan K. COVID-19: unmasking emerging SARS-CoV-2 variants, vaccines and therapeutic strategies. Biomolecules. 2021;11(7):993–1023. doi:10.3390/biom11070993
  • Aleem A, Akbar Samad AB, Slenker AK. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19). In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2022. PMID: 34033342.
  • Tsermpini EE, Glamočlija U, Ulucan-Karnak F, et al. Molecular mechanisms related to responses to oxidative stress and antioxidative therapies in COVID-19: a systematic review. Antioxidants (Basel). 2022;11(8):1004–1007. doi:10.3390/antiox11081609
  • Shang W, Dong J, Ren Y, et al. The value of clinical parameters in predicting the severity of COVID-19. J Med Virol. 2020;92(10):2188–2192. doi:10.1002/jmv.26031
  • Di Marco F, Foti G, Corsico AG. Where are we with the use of N-acetylcysteine as a preventive and adjuvant treatment for COVID-19? Eur Rev Med Pharmacol Sci. 2022;26(2):715–721. doi:10.26355/eurrev_202201_27898
  • Guloyan V, Oganesian B, Baghdasaryan N, et al. Glutathione supplementation as an adjunctive therapy in COVID-19. Antioxidants (Basel). 2020;9(10):914), doi:10.3390/antiox9100914
  • Polonikov A. Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients. ACS Infect Dis. 2020;6(7):1558–1562. doi:10.1021/acsinfecdis.0c00288
  • Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses. 2020;143:110102), doi:10.1016/j.mehy.2020.110102
  • Forman HJ, Zhang H, Rinna A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 2009;30(1-2):1–12. doi:10.1016/j.mam.2008.08.006
  • Galli F, Marcantonini G, Giustarini D, et al. How aging and oxidative stress influence the cytopathic and inflammatory effects of SARS-CoV-2 infection: The role of cellular glutathione and cysteine metabolism. Antioxidants. 2022;11:1366), doi:10.3390/antiox11071366
  • Bartolini D, Stabile AM, Bastianelli S, et al. SARS-CoV2 infection impairs the metabolism and redox function of cellular glutathione. Redox Biol. 2021;45:102041), doi:10.1016/j.redox.2021.102041
  • Coronel PMV, Pereira IC, Basilio DCLS, et al. Biomarkers of oxidative stress and inflammation in subjects with COVID-19: Characterization and prognosis of the disease. Microb Pathog.2023; 184:106339), doi:10.1016/j.micpath.2023.106339
  • Silvagno F, Vernone A, Pescarmona GP. The role of glutathione in protecting against the severe inflammatory response triggered by COVID-19. Antioxidants (Basel). 2020;9(7):624), doi:10.3390/antiox9070624
  • Gadotti AC, Lipinski AL, Vasconcellos FT, et al. Susceptibility of the patients infected with Sars-Cov2 to oxidative stress and possible interplay with severity of the disease. Free Radic Biol Med. 2021;165:184–190. doi:10.1016/j.freeradbiomed.2021.01.044
  • Delgado-Roche L, Mesta F. Oxidative stress as Key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. ArchMed Res. 2020;51(5):384–387. doi:10.1016/j.arcmed.2020.04.019
  • Loetchutinat C, Kothan S, Dechsupa S, et al. Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2′,7′-dichlorofluorescein diacetate assay. Radiat Phys Chem. 2005;72(2-3):323–331. doi:10.1016/j.radphyschem.2004.06.011
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–77. doi:10.1016/0003-9861(59)90090-6
  • Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–35. doi:10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
  • de Almeida Juliana O, de Oliveira Victoria Regina T, Lucas dos SAJ, et al. COVID-19: physiopathology and targets for therapeutic intervention. Rev Virtual Quim. 2020;12(6):1464–1497. doi:10.21577/1984-6835.20200115
  • Veenith T, Martin H, Le Breuilly M, et al. High generation of reactive oxygen species from neutrophils in patients with severe COVID-19. Sci Rep. 2022;12:10484), doi:10.1038/s41598-022-13825-7
  • Wieczfinska J, Kleniewska P, Pawliczak R. Oxidative stress-related mechanisms in SARS-CoV-2 infections. Oxid MednCellLongev. 2022;2022:5589089. doi: 10.1155/2022/5589089
  • Alam MS, Czajkowsky DM. SARS-CoV-2 infection and oxidative stress: Pathophysiological insight into thrombosis and therapeutic opportunities. Cytokine Growth Factor Rev. 2022;63:44–57. doi:10.1016/j.cytogfr.2021.11.001
  • Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin Immunol. 2020;215:108427), doi:10.1016/j.clim.2020.108427
  • Rocha MEG, Chagas VM, Carvalho LG, et al. D-dímero elevado em pacientes com COVID-19: relato de um seguimento clínico e laboratorial em 6 casos confirmados [Elevated D-dimer in patients with covid-19: report of a clinical and laboratory follow-up in 6 confirmed cases]. Hematol Transfus Cell Ther. 2020;42:528–529. doi:10.1016/j.htct.2020.10.892
  • Bruno LC, Soares JAH, Lelis ESDS, et al. Dímero-d como importante marcador para estratificar a gravidade da infecção pelo novo coronavírus: revisão sistemática da literatura [D-Dimer as an important marker To stratify the severity of infection by the new coronavirus: systematic literature review]. Hematol Transfus Cell Ther. 2020;42:530–531. doi:10.1016/j.htct.2020.10.895
  • Fleury MK. A COVID-19 e o laboratório de hematologia: uma revisão da literatura recente [COVID-19 and the hematology laboratory: a recent literature review]. Rev Bras Anal Clin. 2020;52(2). doi:10.21877/2448-3877.20200003
  • Zeng F, Huang Y, Guo Y, et al. Association of inflammatory markers with the severity of COVID-19: a meta-analysis. Int J Infect Dis. 2020;96:467–474. doi:10.1016/j.ijid.2020.05.055
  • Voskresenska N, Voicehovska J, Babikovs S, et al. Glutathione level in community-acquired pneumonia patients. Eur J Respir. 2017;50:PA988.
  • Horowitz RI, Freeman PR, Bruzzese J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases. Respir Med Case Rep. 2020;30:101063. doi: 10.1016/j.rmcr.2020.101063
  • Vardakas P, Skaperda Z, Tekos F, et al. ROS and COVID. Antioxidants (Basel). 2022;11(2):339. doi: 10.3390/antiox11020339
  • Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–95. doi:10.1016/j.ijid.2020.03.017
  • Camp Olivia G, Bai D, Gonullu Damla C Melatonin interferes with COVID-19 at several distinct ROS-related steps. J Inorg Biochem. 2021;223:111546. doi:10.1016/j.jinorgbio.2021.111546