Publication Cover
Redox Report
Communications in Free Radical Research
Volume 29, 2024 - Issue 1
698
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hyperglycemic stress induces oxidative damage of enteric glial cells by triggering redoxosomes/p66SHC activation

, , , , &

References

  • Zawada AE, Moszak M, Skrzypczak D, et al. Gastrointestinal complications in patients with diabetes mellitus. Adv Clin Exp Med. 2018 Apr;27(4):567–572. doi:10.17219/acem/67961
  • Umathe SN, Kochar NI, Jain NS, et al. Gastrointestinal dysfunction in diabetic rats relates with a decline in tissue L-arginine content and consequent low levels of nitric oxide. Nitric Oxide. 2009 Mar;20(2):129–133. doi:10.1016/j.niox.2008.10.007
  • Hu W, Feng P. Myosin light chain kinase is involved in the mechanism of gastrointestinal dysfunction in diabetic rats. Dig Dis Sci. 2012 May;57(5):1197–1202. doi:10.1007/s10620-012-2041-7
  • Lake JI, Heuckeroth RO. Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol. 2013 Jul 1;305(1):G1–24. doi:10.1152/ajpgi.00452.2012
  • Yarandi SS, Srinivasan S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterol Motil. 2014 May;26(5):611–624. doi:10.1111/nmo.12330
  • Seguella L, Gulbransen BD. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol. 2021 Aug;18(8):571–587. doi:10.1038/s41575-021-00423-7
  • Yu YB, Li YQ. Enteric glial cells and their role in the intestinal epithelial barrier. World J Gastroenterol. 2014 Aug 28;20(32):11273–11280. doi:10.3748/wjg.v20.i32.11273
  • Qi R, Yang W, Chen J. Role of enteric glial cells in gastric motility in diabetic rats at different stages. J Huazhong Univ Sci Technolog Med Sci. 2013 Aug;33(4):496–500. doi:10.1007/s11596-013-1148-1
  • Zhu X, Li Y, Zhu X, et al. Circular RNA-VPS13A attenuates diabetes-induced enteric glia damage by targeting miR-182/GDNF Axis. Acta Biochim Biophys Sin (Shanghai). 2022 Jun 25;54(7):999–1007. doi:10.3724/abbs.2022073
  • Luo P, Liu D, Li C, et al. Enteric glial cell activation protects enteric neurons from damage due to diabetes in part via the promotion of neurotrophic factor release. Neurogastroenterol Motil. 2018 Oct;30(10):e13368. doi:10.1111/nmo.13368
  • Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–183. doi:10.1016/j.redox.2015.01.002
  • Ramos-Riera KP. Pérez-Severiano F,López-Meraz ML. Oxidative stress: a common imbalance in diabetes and epilepsy. Metab Brain Dis. 2023 Mar;38(3):767–782. doi:10.1007/s11011-022-01154-7
  • Kashyap P, Farrugia G. Oxidative stress: key player in gastrointestinal complications of diabetes. Neurogastroenterol Motil. 2011 Feb;23(2):111–114. doi:10.1111/j.1365-2982.2010.01659.x
  • Spencer NY, Engelhardt JF. The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies. Biochemistry. 2014 Mar 18;53(10):1551–1564. doi:10.1021/bi401719r
  • Zou W, Lu Q, Zhu X, et al. Procyanidin B2 protects TR-iBRB2 cells against hyperglycemia stress by attenuating oxidative stress and inflammasome activation via regulation of Redoxosomes/NF-kB signaling. Curr Mol Med. 2022 Oct 17;23(10):1095–1103. doi:10.2174/1566524023666221017120334
  • Yin J, Wang K, Zhu X, et al. Procyanidin B2 suppresses hyperglycemia-induced renal mesangial cell dysfunction by modulating CAV-1-dependent signaling. Exp Ther Med. 2022 Aug;24(2):496. doi:10.3892/etm.2022.11423
  • Wang K, Chen Y, Zhu X, et al. Ginkgo biloba extract attenuates light-induced photoreceptor degeneration by modulating CAV-1-Redoxosome signaling. Antioxidants (Basel). 2022 Jun 27;11(7):1268. doi:10.3390/antiox11071268
  • Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc. 2018 Jun 1;2018(6). doi:10.1101/pdb.prot095505
  • Rasooly R, Do P, He X, et al. A sensitive, cell-based assay for measuring low-level biological activity of α-Amanitin. Int J Mol Sci. 2023 Nov;24(22):16402.
  • Kyrylkova K, Kyryachenko S, Leid M, et al. Detection of apoptosis by TUNEL assay. Methods Mol Biol. 2012;887:41–47. doi:10.1007/978-1-61779-860-3_5
  • Aranda A, Sequedo L, Tolosa L, et al. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicol In Vitro. 2013 Mar;27(2):954–963. doi:10.1016/j.tiv.2013.01.016
  • Wang Y, Lou MF. The regulation of NADPH oxidase and its association with cell proliferation in human lens epithelial cells. Invest Ophthalmol Vis Sci. 2009 May;50(5):2291–2300. doi:10.1167/iovs.08-2568
  • Walker JM. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol Biol. 1994;32:5–8. doi:10.1385/0-89603-268-x:5
  • Jindal RM, Karanam M, Shah R. Prevention of diabetes in the NOD mouse by intra-muscular injection of recombinant adeno-associated virus containing the preproinsulin II gene. Int J Exp Diabetes Res. 2001;2(2):129–138. doi:10.1155/EDR.2001.129
  • Tasfaout H, Lionello VM, Kretz C, et al. Single intramuscular injection of AAV-shRNA reduces DNM2 and prevents myotubular myopathy in mice. Mol Ther. 2018 Apr 4;26(4):1082–1092. doi:10.1016/j.ymthe.2018.02.008
  • Li MY, Duan JQ, Wang XH, et al. Inulin inhibits the inflammatory response through modulating enteric glial cell function in type 2 diabetic mellitus mice by reshaping intestinal flora. ACS Omega. 2023 Oct 10;8(40):36729–36743. doi:10.1021/acsomega.3c03055
  • Jiang Q, Yuan S, Wang K, et al. Ginkgo biloba extract ameliorates hyperglycaemia-induced enteric glial cell injury via regulation of the TLR2-related pathway. J Pharm Pharmacol. 2023 Nov 23;75(11):1430–1441. doi:10.1093/jpp/rgad075
  • Shahin WS, Engelhardt JF. Isolation of redox-active endosomes (redoxosomes) and assessment of NOX activity. Methods Mol Biol. 2019;1982:461–472. doi:10.1007/978-1-4939-9424-3_27
  • Mir HA, Ali R, Mushtaq U, et al. Structure-functional implications of longevity protein p66Shc in health and disease. Ageing Res Rev. 2020 Nov;63:101139. doi:10.1016/j.arr.2020.101139
  • Mousavi S, Khazeei Tabari MA, Bagheri A, et al. The role of p66Shc in diabetes: a comprehensive review from bench to bedside. J Diabetes Res. 2022;2022:7703520. doi:10.1155/2022/7703520
  • Minami Y, Sonoda N, Hayashida E, et al. p66Shc signaling mediates diabetes-related cognitive decline. Sci Rep. 2018 Feb 16;8(1):3213. doi:10.1038/s41598-018-21426-6
  • Albiero M, Ciciliot S, Tedesco S, et al. Diabetes-associated myelopoiesis drives stem cell mobilopathy through an OSM-p66Shc signaling pathway. Diabetes. 2019 Jun;68(6):1303–1314. doi:10.2337/db19-0080