Publication Cover
Redox Report
Communications in Free Radical Research
Volume 29, 2024 - Issue 1
754
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Zinc ameliorates acrylamide-induced oxidative stress and apoptosis in testicular cells via Nrf2/HO-1/NfkB and Bax/Bcl2 signaling pathway

, ORCID Icon, &

References

  • Babakhanzadeh E, Nazari M, Ghasemifar S, et al. Some of the factors involved in male infertility: a prospective review. Int J Gen Med. 2020;13:29–41. doi:10.2147/IJGM.S241099
  • Kumar N, Singh AK. Trends of male factor infertility, an important cause of infertility: a review of literature. J Hum Reprod Sci. 2015;8(4):191–196. doi:10.4103/0974-1208.170370
  • Bušová M, Bencko V, Veszelits Laktičová K, et al. Risk of exposure to acrylamide. Cent Eur J Public Health. 2020;28(Suppl):S43–S46.
  • Urban M, Kavvadias D, Riedel K, et al. Urinary mercapturic acids and a hemoglobin adduct for the dosimetry of acrylamide exposure in smokers and nonsmokers. Inhal Toxicol. 2006;18(10):831–839. doi:10.1080/08958370600748430
  • Sarion C, Codină GG, Dabija A. Acrylamide in bakery products: a review on health risks, legal regulations and strategies to reduce its formation. Int J Environ Res Public Health. 2021;18(8):4332. doi:10.3390/ijerph18084332
  • Ahmed MM, Hammad AA, Orabi SH, et al. Reproductive injury in male rats from acrylamide toxicity and potential protection by earthworm methanolic extract. Animals (Basel). 2022;12(13):1723. doi:10.3390/ani12131723
  • Wang ET, Chen DY, Liu HY, et al. Protective effect of allicin against glycidamide-induced toxicity in male and female mice. Gen Physiol Biophys. 2015;34(2):177–187. doi:10.4149/gpb_2014038
  • Doroshyenko O, Fuhr U, Kunz D, et al. In vivo role of cytochrome P 450 2E1 and glutathione- S -transferase activity for acrylamide toxicokinetics in humans. Cancer Epidemiol Biomarkers Prev. 2009;18(2):433–443. doi:10.1158/1055-9965.EPI-08-0832
  • Sengul E, Gelen V, Yildirim S, et al. Effects of naringin on oxidative stress, inflammation, some reproductive parameters, and apoptosis in acrylamide-induced testis toxicity in rat. Environ Toxicol. 2023;38(4):798–808. doi:10.1002/tox.23728
  • Varthya SB, Sarma P, Bhatia A, et al. Efficacy of green tea: its polyphenols and nanoformulation in experimental colitis and the role of non-canonical and canonical nuclear factor kappa beta (NF-kB) pathway: a preclinical in-vivo and in-silico exploratory study. J Biomol Struct Dyn. 2021;39(14):5314–5326. doi:10.1080/07391102.2020.1785946
  • Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development: oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016 Sep;73(17):3221–3247. doi:10.1007/s00018-016-2223-0
  • Xue D, Zhou X, Qiu J. Emerging role of NRF2 in ROS-mediated tumor chemoresistance. Biomed Pharmacother. 2020 Nov;131:110676. doi:10.1016/j.biopha.2020.110676
  • Kucukler S, Caglayan C, Darendelioğlu E, et al. Morin attenuates acrylamide-induced testicular toxicity in rats by regulating the NF-κB, Bax/Bcl-2 and PI3K/Akt/mTOR signaling pathways. Life Sci. 2020 Nov 15;261:118301. doi:10.1016/j.lfs.2020.118301
  • Wardyn JD, Ponsford AH, Sanderson CM. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans. 2015 Aug;43(4):621–626. doi:10.1042/BST20150014
  • Niture SK, Jaiswal AK. Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J Biol Chem. 2012 Mar 23;287(13):9873–9886. doi:10.1074/jbc.M111.312694
  • Rawi SM, Seif Al Nassr FM. Zinc sulphate and vitamin E alleviate reproductive toxicity caused by aluminium sulphate in male albino rats. Toxicol Ind Health. 2015 Mar;31(3):221–234. doi:10.1177/0748233712469650
  • Stefanson AL, Bakovic M. Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients. 2014 Sep 19;6(9):3777–3801. doi:10.3390/nu6093777
  • Hamed MA, Akhigbe RE, Aremu AO, et al. Zinc normalizes hepatic lipid handling via modulation of ADA/XO/UA pathway and caspase 3 signaling in highly active antiretroviral therapy-treated Wistar rats. Chem Biol Interact. 2022;368:110233. doi:10.1016/j.cbi.2022.110233
  • Kalaivani M, Saleena UV, Kamath Katapadi KG, et al. Effect of acrylamide ingestion on reproductive organs of adultmale wistar rats. J Clin Diagn Res. 2018;12(11).
  • Farag OM, Abd-Elsalam RM, El Badawy SA, et al. Portulaca oleracea seeds’ extract alleviates acrylamide-induced testicular dysfunction by promoting oxidative status and steroidogenic pathway in rats. BMC Complement Med Ther. 2021 Apr 14;21(1):122. doi:10.1186/s12906-021-03286-2
  • Pourentezari M, Talebi A, Abbasi A, et al. Effects of acrylamide on sperm parameters: chromatin quality, and the level of blood testosterone in mice. Iran J Reprod Med. 2014 May;12(5):335–342.
  • Fatai OA, Aribidesi OL. Effect of bisphenol F on sexual performance and quality of offspring in male Wistar rats. Ecotoxicol Environ Saf. 2022 Oct 1;244:114079. doi:10.1016/j.ecoenv.2022.114079
  • Akhigbe RE, Hamed MA, Odetayo AF, et al. Omega-3 fatty acid rescues ischaemia/perfusion-induced testicular and sperm damage via modulation of lactate transport and xanthine oxidase/uric acid signaling. Biomed Pharmacother. 2021 Oct;142:111975. doi:10.1016/j.biopha.2021.111975
  • Olayaki LA, Okesina KB, Jesubowale JD, et al. Orange peel extract and physical exercise synergistically ameliorate type 2 diabetes mellitus-induced dysmetabolism by upregulating GLUT4 concentration in male Wistar rats. J Med Food. 2023 Jul;26(7):470–479. doi:10.1089/jmf.2023.0061
  • Zhang J, Zhu X, Xu W, et al. Exposure to acrylamide inhibits testosterone production in mice testes and Leydig cells by activating ERK1/2 phosphorylation. Food Chem Toxicol. 2023 Feb;172:113576. doi:10.1016/j.fct.2022.113576
  • Khalil WKB, Ahmed HH, Hanan F, et al. Toxicological effects of acrylamide on testicular function and immune genes expression profile in rats. J Pharm Sci Rev Res. 2014;24(1):143–151.
  • Kermani-Alghoraishi M, Anvari M, Talebi AR, et al. The effects of acrylamide on sperm parameters and membrane integrity of epididymal spermatozoa in mice. Eur J Obstet Gynecol Reprod Biol. 2010 Nov;153(1):52–55. doi:10.1016/j.ejogrb.2010.07.008
  • Zhang H, Shan L, Aniagu S, et al. Paternal acrylamide exposure induces transgenerational effects on sperm parameters and learning capability in mice. Food Chem Toxicol. 2022 Mar;161:112817. doi:10.1016/j.fct.2022.112817
  • Oluwasola A, Ayoola OE, Odetayo AF, et al. Ameliorative effect of melatonin on reproductive hormones in ethanol extracts of cannabis sativa-treated female Wistar rats. Soc Exp Biol Niger. 2023;22:53–58.
  • Gül M, Kayhan Kuştepe E, Erdemli ME, et al. Protective effects of crocin on acrylamide-induced testis damage. Andrologia. 2021 Oct;53(9):e14176.
  • Erdemli Z, Erdemli ME, Turkoz Y, et al. The effects of acrylamide and vitamin E administration during pregnancy on adult rats testis. Andrologia. 2019 Aug;51(7):e13292. doi:10.1111/and.13292
  • Adeyemi DH, Odetayo AF, Hamed MA, et al. Impact of COVID 19 on erectile function. Aging Male. 2022 Dec;25(1):202–216. doi:10.1080/13685538.2022.2104833
  • Afolabi OA, Anyogu DC, Hamed MA, et al. Glutamine prevents upregulation of NF-kB signaling and caspase 3 activation in ischaemia/reperfusion-induced testicular damage: an animal model. Biomed Pharmacother = Biomed Pharmacother. 2022;150:113056. doi:10.1016/j.biopha.2022.113056
  • Odetayo AF, Olayaki LA. Bisphenol F induced reproductive toxicity by disrupting steroidogenic enzymes activities and upregulating xanthine oxidase/uric acid signaling. Fertil Steril. 2022;118(4):e75. doi:10.1016/j.fertnstert.2022.08.230
  • Rajeh NA, Al-Shehri AM. Antioxidant effect of Ferula hermonis Boiss on acrylamide induced testicular toxicity in male rats; 2019.
  • Odetayo AF, Adeyemi WJ, Olayaki LA. In vivo exposure to bisphenol F induces oxidative testicular toxicity: role of Erβ and p53/Bcl-2 signaling pathway. Front Reprod Health. 2023 Aug 2;5:1204728. doi:10.3389/frph.2023.1204728
  • Kopańska M, Łagowska A, Kuduk B, et al. Acrylamide neurotoxicity as a possible factor responsible for inflammation in the cholinergic nervous system. Int J Mol Sci. 2022 Feb 12;23(4):2030. doi:10.3390/ijms23042030
  • Liu T, Zhang L, Joo D, et al. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. doi:10.1038/sigtrans.2017.23
  • Afolabi AO, Akhigbe TM, Odetayo AF, et al. Restoration of hepatic and intestinal integrity by phyllanthus amarus is dependent on Bax/Caspase 3 modulation in intestinal ischemia-/reperfusion-induced injury. Molecules. 2022 Aug 9;27(16):5073. doi:10.3390/molecules27165073
  • Ganesh Yerra V, Negi G, Sharma SS, et al. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol. 2013 Aug 1;1(1):394–397. doi:10.1016/j.redox.2013.07.005
  • Liu GH, Qu J, Shen X. NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta. 2008 May;1783(5):713–727. doi:10.1016/j.bbamcr.2008.01.002
  • Varışlı B, Caglayan C, Kandemir FM, et al. The impact of Nrf2/HO-1, caspase-3/Bax/Bcl2 and ATF6/IRE1/PERK/GRP78 signaling pathways in the ameliorative effects of morin against methotrexate-induced testicular toxicity in rats. Mol Biol Rep. 2022 Oct;49(10):9641–9649. doi:10.1007/s11033-022-07873-5
  • Afolabi OA, Hamed MA, Anyogu DC, et al. Atorvastatin-mediated downregulation of VCAM-1 and XO/UA/caspase 3 signaling averts oxidative damage and apoptosis induced by ovarian ischaemia/reperfusion injury. Redox Rep Commun Free Radical Res. 2022;27(1):212–220.
  • Ganju N, Eastman A. Zinc inhibits Bax and Bak activation and cytochrome c release induced by chemical inducers of apoptosis but not by death-receptor-initiated pathways. Cell Death Differ. 2003 Jun;10(6):652–661. doi:10.1038/sj.cdd.4401234
  • Akhigbe RE, Hamed MA, Odetayo AF, et al. Zinc improves sexual and erectile function in HAART-treated rats via the upregulation of erectogenic enzymes and maintenance of redox balance. Aging Male. 2023 Dec;26(1):2205517. doi:10.1080/13685538.2023.2205517