93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Beyond the walls of formality: the role of non-formal science activities in teachers’ professional development

ORCID Icon & ORCID Icon
Pages 207-225 | Received 15 Oct 2022, Accepted 19 Dec 2023, Published online: 05 Mar 2024

References

  • Abernathy, T. V., & Vineyard, R. N. (2001). Academic competitions in science: What are the rewards for students? The Clearing House: A Journal of Educational Strategies, Issues & Ideas, 74(5), 269–276. https://doi.org/10.1080/00098650109599206
  • Affeldt, F., Tolppanen, S., Aksela, M., & Eilks, I. (2017). The potential of the non-formal educational sector for supporting chemistry learning and sustainability education for all students – A joint perspective from two cases in Finland and Germany. Chemistry Education Research and Practice, 18(1), 13–25. https://doi.org/10.1039/C6RP00212A
  • Anderson, R. (2007). Thematic Content Analysis (TCA) descriptive presentation of qualitative data. Institute of Transpersonal Psychology. https://rosemarieanderson.com/wp-content/uploads/2014/08/ThematicContentAnalysis.pdf
  • Anderson, D., Kisiel, J., & Storksdieck, M. (2006). Understanding Teachers’ Perspectives on Field Trips: Discovering Common Ground in Three Countries. Curator the Museum Journal, 49(3), 365–386. https://doi.org/10.1111/j.2151-6952.2006.tb00229.x
  • Anderson, D., Lawson, B., & Mayer‐Smith, J. (2006). Investigating the impact of a practicum experience in an aquarium on pre‐service teachers. Teaching Education, 17(4), 341–353. https://doi.org/10.1080/10476210601017527
  • Aslam, F., Adefila, A., & Bagiya, Y. (2018). STEM outreach activities: An approach to teachers’ professional development. Journal of Education for Teaching, 44(1), 58–70. https://doi.org/10.1080/02607476.2018.1422618
  • Avraamidou, L. (2014). Developing a reform-minded science teaching identity: The role of informal science environments. Journal of Science Teacher Education, 25(7), 823–843. https://doi.org/10.1007/s10972-014-9395-y
  • Avraamidou, L. (2015). Reconceptualizing Elementary Teacher preparation: A case for informal science education. International Journal of Science Education, 37(1), 108–135. https://doi.org/10.1080/09500693.2014.969358
  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
  • Chin, C.-C. (2004). Museum experience – a resource for science teacher education. International Journal of Science and Mathematics Education, 2(1), 63–90. https://doi.org/10.1023/B:IJMA.0000026536.75034.34
  • Çil, E., Maccario, N., & Yanmaz, D. (2016). Design, implementation and evaluation of innovative science teaching strategies for non-formal learning in a natural history museum. Research in Science & Technological Education, 34(3), 325–341. https://doi.org/10.1080/02635143.2016.1222360
  • Domenici, V. (2022). STEAM project-based learning activities at the Science Museum as an effective training for future chemistry teachers. Education Sciences, 12(1), 30. https://doi.org/10.3390/educsci12010030
  • Douglass, H., & Verma, G. (2022). Examining STEM teaching at the intersection of informal and formal spaces: Exploring science pre-service elementary teacher preparation. Journal of Science Teacher Education, 33(3), 247–261. https://doi.org/10.1080/1046560X.2021.1911456
  • Eren-Şişman, E. N., Çiğdemoğlu, C., Kanlı, U., & Köseoğlu, F. (2020). Science teachers’ professional development about science centers: Enhancing science teachers’ views concerning nature of science. Science & Education, 29(5), 1255–1290. https://doi.org/10.1007/s11191-020-00136-4
  • Fernández-Limón, C., Fernández-Cárdenas, J. M., & Gómez-Galindo, A. A. (2018). The role of non-formal contexts in teacher education for STEM: The case of horno3 science and technology interactive centre. Journal of Education for Teaching, 44(1), 71–89. https://doi.org/10.1080/02607476.2018.1422623
  • Fernández-Oliveras, A., & Oliveras, M. L. (2016). Broadening teacher training: Playful learning in non-formal contexts for science and mathematics education.
  • Foster, J. S., & Shiel-Rolle, N. (2011). Building scientific literacy through summer science camps: A strategy for design, implementation and assessment. International Council of Associations for Science Education, 22(2), 85–98.
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education (8th ed.). McGraw-Hill.
  • García-Ruiz, J. M. (2013). Cristalización en la Escuela. Anales de la Real Sociedad Española de Química, 109(3), 244–245.
  • Garner, N., & Eilks, I. (2015). The expectations of teachers and students who visit a non-formal student chemistry laboratory. EURASIA Journal of Mathematics, Science and Technology Education, 11(5), 1197–1210. https://doi.org/10.12973/eurasia.2015.1415a
  • Garner, N., Siol, A., & Eilks, I. (2015). The potential of non-formal laboratory environments for innovating the chemistry curriculum and promoting secondary school level students education for sustainability. Sustainability, 7(2), 1798–1818. https://doi.org/10.3390/su7021798
  • Guisasola, J., & Morentin, M. (2010). Concepciones del profesorado sobre visitas escolares a museos de Ciencias. Enseñanza de las Ciencias, 28(1), 0127–0140. https://doi.org/10.5565/rev/ensciencias.3626
  • Halonen, J., & Aksela, M. (2018). Non-formal science education: The relevance of science camps. LUMAT: International Journal on Math, Science and Technology Education, 6(2), 64–85. https://doi.org/10.31129/LUMAT.6.2.316
  • Jung, M. L., & Tonso, K. L. (2006). Elementary preservice teachers learning to teach science in science museums and nature centers: A novel program’s impact on science knowledge, science pedagogy, and confidence teaching. Journal of Elementary Science Education, 18(1), 15–31. https://doi.org/10.1007/BF03170651
  • Katz, P., Randy McGinnis, J., Riedinger, K., Marbach-Ad, G., & Dai, A. (2013). The influence of informal science education experiences on the development of two beginning teachers’ science classroom teaching identity. Journal of Science Teacher Education, 24(8), 1357–1379. https://doi.org/10.1007/s10972-012-9330-z
  • Kelly, J. (2000). Rethinking the elementary science methods course: A case for content, pedagogy, and informal science education. International Journal of Science Education, 22(7), 755–777. https://doi.org/10.1080/09500690050044080
  • Kisiel, J. (2013). Introducing future teachers to science beyond the classroom. Journal of Science Teacher Education, 24(1), 67–91. https://doi.org/10.1007/s10972-012-9288-x
  • Lin, P.-Y., & Schunn, C. D. (2016). The dimensions and impact of informal science learning experiences on middle schoolers’ attitudes and abilities in science. International Journal of Science Education, 38(17), 2551–2572. https://doi.org/10.1080/09500693.2016.1251631
  • Luehmann, A. L., & Markowitz, D. (2007). Science teachers’ perceived benefits of an Out‐of‐school enrichment programme: Identity needs and university affordances. International Journal of Science Education, 29(9), 1133–1161. https://doi.org/10.1080/09500690600944429
  • Martín-García, J., & Dies Álvarez, M. E. (2022). An examination of teacher’s goals for a school crystal growing competition: More than having fun. International Journal of Science Education, 44(6), 962–979. https://doi.org/10.1080/09500693.2022.2059121
  • Mayring, P. (2000). Qualitative content analysis. Forum: Qualitative Social Research, 1–2. https://doi.org/10.17169/fqs-1.2.1089
  • Miller, K., Sonnert, G., & Sadler, P. (2018). The influence of students’ participation in STEM competitions on their interest in STEM careers. International Journal of Science Education, Part B, 8(2), 95–114. https://doi.org/10.1080/21548455.2017.1397298
  • Nguyen, N., & Van Meervelt, L. (2015). Growing-crystals, lighting up dreams-crystal growing competition in Vietnam. Acta Crystallographica Section A Foundations and Advances, 71(a1), s528–s529. https://doi.org/10.1107/S2053273315092190
  • Oliva, J. M., Matos, J. M., & Acevedo, J. A. (2008). Contribución de las exposiciones científicas escolares al desarrollo profesional docente de los profesores participantes. Revista Electrónica de Enseñanza de las Ciencias, 7(1), 178–198.
  • Oliva, J. M., Matos, J., Bueno, E., Bonat, M., Domínguez, J., Vázquez, A., & Acevedo, J. A. (2004). Las exposiciones científicas escolares & su contribución en el ámbito afectivo de los alumnos participantes. Enseñanza de Las Ciencias: Revista de Investigación y Experiencias Didácticas, 22(3), 425–440. https://doi.org/10.5565/rev/ensciencias.3874
  • Olson, J. K., Cox-Petersen, A. M., & McComas, W. F. (2001). The inclusion of informal environments in science Teacher preparation. Journal of Science Teacher Education, 12(3), 155–173. https://doi.org/10.1023/A:1016715127697
  • Park, S., & Oliver, J. S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38(3), 261–284. https://doi.org/10.1007/s11165-007-9049-6
  • Perret, D., Hagemann, H., Černý, R., Renner, C., Giannini, E., Guénée, L., Besnard, C., Gérard, D., & Windels, L. (2014). Crystal-clear – the «2014 most superlative crystal growth contest» for school classes. CHIMIA International Journal for Chemistry, 68(12), 893–895. https://doi.org/10.2533/chimia.2014.893
  • Pickering, J., Ague, J. J., Rath, K. A., Heiser, D. M., & Sirch, J. N. (2012). Museum-based teacher professional development: Peabody fellows in earth science. Journal of Geoscience Education, 60(4), 337–349. https://doi.org/10.5408/11-241.1
  • Pinto Monteiro, B. A., Martins, I., de Souza Janerine, A., & de Carvalho, F. C. (2016). The issue of the arrangement of new environments for science education through collaborative actions between schools, museums and science centres in the Brazilian context of teacher training. Cultural Studies of Science Education, 11(2), 419–437. https://doi.org/10.1007/s11422-014-9638-4
  • Popovic, G., & Lederman, J. S. (2015). Implications of informal education experiences for mathematics teachers’ ability to make connections beyond formal classroom: Informal experiences for math teachers. School Science and Mathematics, 115(3), 129–140. https://doi.org/10.1111/ssm.12114
  • Riedinger, K., Marbach-Ad, G., Randy McGinnis, J., Hestness, E., & Pease, R. (2011). Transforming elementary science Teacher education by bridging formal and informal science education in an innovative science methods course. Journal of Science Education and Technology, 20(1), 51–64. https://doi.org/10.1007/s10956-010-9233-8
  • Scharfenberg, F.-J., & Bogner, F. X. (2014). Outreach science education: Evidence-based studies in a gene technology lab. EURASIA Journal of Mathematics, Science and Technology Education, 10(4). https://doi.org/10.12973/eurasia.2014.1086a
  • Stetson, R., & Stroud, N. D. (2014). Pre-service teacher training at the museum school. Journal of Museum Education, 39(1), 67–77. https://doi.org/10.1080/10598650.2014.11510796
  • Strauss, A., & Corbin, J. (2002). Basics of qualitative research. Techniques and procedures for developing grounded theory (1a). Editorial Universidad de Antioquia.
  • Tal, R. T. (2001). Incorporating field trips as science learning environment enrichment—an interpretative study. Learning Environments Research, 4(1), 25–4. https://doi.org/10.1023/A:1011454625413
  • Tan, K. S., Goh, N. K., & Chia, L. S. (2006). Bridging the cognitive-affective gap: Teaching chemistry while advancing affective objectives. The Singapore curricular experience. Journal of Chemical Education, 83(1), 59. https://doi.org/10.1021/ed083p59
  • Tang, S. Y. F., Wong, A. K. Y., Li, D. D. Y., & Cheng, M. M. H. (2017). The contribution of non-formal learning in higher education to student teachers’ professional competence. Journal of Education for Teaching, 43(5), 550–565. https://doi.org/10.1080/02607476.2017.1342052
  • Tisza, G., Papavlasopoulou, S., Christidou, D., Iivari, N., Kinnula, M., & Voulgari, I. (2020). Patterns in informal and non-formal science learning activities for children–A Europe-wide survey study. International Journal of Child-Computer Interaction, 25, 100184. https://doi.org/10.1016/j.ijcci.2020.100184
  • Van Meervelt, L. (2014). Towards a world-wide crystal growing competition. Acta Crystallographica Section A Foundations and Advances, 70(a1), C1044–C1044. https://doi.org/10.1107/S2053273314089554
  • Whelan, J., Koussa, J., Chehade, I., Sabanovic, M., Chang, A., Carelli, D., An, Z., Zhang, L., Bernstein, J., & Rabeh, W. M. (2018). Crystal growth, a research-driven laboratory course. Journal of Applied Crystallography, 51(5), 1474–1480. https://doi.org/10.1107/S1600576718009573
  • Wissehr, C., & Hanuscin, D. L. (2008). Science Museums & Specialized Content Courses for Prospective Elementary Teachers. Annual Meeting of the Association for Science Teacher Education, St. Louis, MO, 1–24.
  • Yu, J.-C., & Yang, H.-J. (2010). Incorporating museum experience into an in-service programme for science and technology teachers in Taiwan. International Journal of Technology and Design Education, 20(4), 417–431. https://doi.org/10.1007/s10798-009-9101-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.