231
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical study on three-stage ignition of dimethyl ether by hot air under engine-relevant conditions

, , , , , , ORCID Icon & show all
Pages 127-150 | Received 10 May 2023, Accepted 16 Sep 2023, Published online: 25 Sep 2023

References

  • A. Krisman, E.R. Hawkes, M. Talei, A. Bhagatwala and J.H. Chen, A direct numerical simulation of cool-flame affected autoignition in diesel engine-relevant conditions. Proc. Combust. Inst. 36 (2017), pp. 3567–3575.
  • R. Knikkerr, A. Dauptain, B. Cuenot and T. Poinsot, Comparison of computational methodologies for ignition of diffusion layers. Combust. Sci. Technol. 175 (2003), pp. 1783–1806.
  • C.K. Law, Combustion Physics, Cambridge University Press, Cambridge, 2006.
  • S. Deng, D. Han and C. Law, Ignition and extinction of strained nonpremixed cool flames at elevated pressures. Combust. Flame 176 (2017), pp. 143–150.
  • X.L. Zheng, T.F. Lu, C.K. Law, C.K. Westbrook and H.J. Curran, Experimental and computational study of nonpremixed ignition of dimethyl ether in counterflow. Proc. Combust. Inst. 30 (2005), pp. 1101–1109.
  • J. Buckmaster, Edge-flames. Prog. Energy Combust. Sci. 28 (2002), pp. 435–475.
  • S.H. Chung, Stabilization, propagation and instability of tribrachial triple flames. Proc. Combust. Inst. 31 (2007), pp. 877–892.
  • A. Krisman, E.R. Hawkes, M. Talei, A. Bhagatwala and J.H. Chen, Polybrachial structures in dimethyl ether edge-flames at negative temperature coefficient conditions. Proc. Combust. Inst. 35 (2015), pp. 999–1006.
  • S. Deng, P. Zhao, M.E. Mueller and C.K. Law, Autoignition-affected stabilization of laminar nonpremixed DME/air coflow flames. Combust. Flame 162 (2015), pp. 3437–3445.
  • K.S. Jung, S.O. Kim, T. Lu, S.H. Chung, B.J. Lee and C.S. Yoo, Differential diffusion effect on the stabilization characteristics of autoignited laminar lifted methane/hydrogen jet flames in heated coflow air. Combust. Flame 198 (2018), pp. 305–319.
  • B.C. Choi, K.N. Kim and S.H. Chung, Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion. Combust. Flame 156 (2009), pp. 396–404.
  • K. Van, K.S. Jung, C.S. Yoo, S. Oh, B.J. Lee, M.S. Cha, J. Park and S.H. Chung, Decreasing liftoff height behavior in diluted laminar lifted methane jet flames. Proc. Combust. Inst. 37 (2019), pp. 2005–2012.
  • S. Deng, P. Zhao, M.E. Mueller and C.K. Law, Stabilization of laminar nonpremixed DME/air coflow flames at elevated temperatures and pressures. Combust. Flame 162 (2015), pp. 4471–4478.
  • D.K. Dalakoti, K. Alex, S. Bruno, W. Armin, H. Wang, M.S. Day, J.B. Bell and E.R. Hawkes, Structure and propagation of two-dimensional, partially premixed, laminar flames in diesel engine conditions. Proc. Combust. Inst. 37 (2019), pp. 1961–1969.
  • S.H. Park and C.S. Lee, Corrigendum to Combustion performance and emission reduction characteristics of automotive DME engine system. Prog. Energy Combust. Sci. 39 (2013), pp. 147–168.
  • Y. Ju, C.B. Reuter, O.R. Yehia, T. Farouk and S.H. Won, Dynamics of cool flames. Prog. Energy Combust. Sci. 75 (2019), pp. 100787.
  • C.K. Westbrook, Chemical kinetics of hydrocarbon ignition in practical combustion systems. Proc. Combust. Inst. 28 (2000), pp. 1563–1577.
  • S.M. Sarathy, E. Tingas, E.F. Nasir, A. Detogni, Z. Wang, A. Farooq and H. Im, Three-stage heat release in n-heptane auto-ignition. Proc. Combust. Inst. 37 (2019), pp. 485–492.
  • H. Oshibe, H. Nakamura, T. Tezuka, S. Hasegawa and K. Maruta, Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile. Combust Flame 157 (2010), pp. 1572–1580.
  • M. Tao, Q. Yang, P. Lynch and P. Zhao, Auto-ignition and reaction front dynamics in mixtures with temperature and concentration stratification. Front. Mech. Eng. 6 (2020), pp. 68.
  • G. Issayev, S.M. Sarathy and A. Farooq, Autoignition of diethyl ether and a diethyl ether/ethanol blend. Fuel 279 (2020), pp. 118553.
  • Y. Ju, Understanding cool flames and warm flames. Proc. Combust. Inst. 38 (2021), pp. 83–119.
  • Z. Zhao, M. Chaos, A. Kazakov and F.L. Dryer, Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether. Int. J. Chem. Kinet. 40 (2008), pp. 1–18.
  • A. Bhagatwala, Z. Luo, H. Shen, J.A. Sutton, T. Lu and J.H. Chen, Numerical and experimental investigation of turbulent DME jet flames. Proc. Combust. Inst. 35 (2015), pp. 1157–1166.
  • R.W. Bilger, The structure of turbulent nonpremixed flames. Symp. Combust. 22 (1989), pp. 475–488.
  • H. Pitsch and N. Peters, A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combust. Flame 114 (1998), pp. 26–40.
  • P. Dai and Z. Chen, Supersonic reaction front propagation initiated by a hot spot in n-heptane/air mixture with multistage ignition. Combust. Flame 162 (2015), pp. 4183–4193.
  • Z. Chen, Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit. Combust. Flame 157 (2010), pp. 2267–2276.
  • Z. Chen, M.P. Burke and Y. Ju, On the critical flame radius and minimum ignition energy for spherical flame initiation. Int. J. Chem. Kinet. 33 (2011), pp. 1219–1226.
  • Y. Wang, W. Han and Z. Chen, Effects of fuel stratifcation on ignition kernel development and minimum ignition energy of n-decane/air mixtures. Proc. Combust. Inst. 37 (2019), pp. 1623–1630.
  • M. Faghih, W. Han and Z. Chen, Effects of Soret diffusion on premixed flame propagation under engine-relevant conditions. Combust. Flame 194 (2018), pp. 175–179.
  • Z. Li, X. Gou and Z. Chen, Effects of hydrogen addition on non-premixed ignition of iso-octane by hot air in a diffusion layer. Combust. Flame 199 (2019), pp. 292–300.
  • X. Chen, H. Bottler, A. Scholtissek, C. Hasse and Z. Chen, Effects of stretch-chemistry interaction on chemical pathways for strained and curved hydrogen/air premixed flames. Combust. Flame 232 (2021), pp. 111532.
  • X. Chen, P. Zhao, P. Dai and Z. Chen, On the prediction of hot spot induced ignition by the Livengood-Wu integral. Proc. Combust. Inst. 38 (2021), pp. 4709–4716.
  • W. Han, Z. Sun, A. Scholtissek and C. Hasse, Machine learning of ignition delay times under dual-fuel engine conditions. Fuel 288 (2020), pp. 119650.
  • A. Zschutschke, D. Messig, A. Scholtissek, C. Hasse, Universal Laminar Flame Solver (ULF), https://figshare.com/articles/ULF_code_pdf/5119855, (2017)
  • T. Zirwes, F. Zhang, P. Habisreuther, M. Hansinger, H. Bockhorn, M. Pfitzner and D. Trimis, Quasi-DNS dataset of a piloted flame with inhomogeneous inlet conditions. Flow Turbul. Combust. 104 (2020), pp. 997–1027.
  • T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, Automated code generation for maximizing performance of detailed chemistry calculations in OpenFOAM, high performance computing in science and engineering ‘ 172018
  • D.G. Goodwin, Cantera C++ user's guide, California Institute of Technology, California, 2002.
  • Y. Wang, H. Zhang, T. Zirwes, F. Zhang, H. Bockhorn and Z. Chen, Ignition of dimethyl ether/air mixtures by hot particles: impact of low temperature chemical reactions. Proc. Combust. Inst. 38 (2021), pp. 2459–2466.
  • T. Zirwes, F. Zhang, P. Habisreuther, M. Hansinger, H. Bockhorn, M. Pfitzner and D. Trimis, Identification of flame regimes in partially premixed combustion from a quasi-DNS dataset. Flow Turbul. Combust. 106 (2021), pp. 373–404.
  • T. Zirwes, T. Häber, F. Zhang, H. Kosaka, A. Dreizler, M. Steinhausen, C. Hasse, A. Stagni, D. Trimis, R. Suntz and H. Bockhorn, Numerical study of quenching distances for side-wall quenching using detailed diffusion and chemistry. Flow Turbul. Combust. 106 (2021), pp. 649–679.
  • Z. Wang, X. Zhang, L. Xing, L. Zhang, F. Herrmann, K. Moshammer, F. Qi and K. Kohse-Hoeinghaus, Experimental and kinetic modeling study of the low- and intermediate-temperature oxidation of dimethyl ether. Combust. Flame 162 (2015), pp. 1113–1125.
  • S. Deng, D. Han and C.K. Law, Ignition and extinction of strained nonpremixed cool flames at elevated pressures. Combust. Flame 176 (2017), pp. 143–150.
  • Y.B. Zeldovich, Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame 39 (1980), pp. 211–214.
  • H. Yamada, K. Suzaki, A. Tezaki and Y. Goto, Transition from cool flame to thermal flame in compression ignition process. Combust. Flame 154 (2008), pp. 248–258.
  • W. Zhang, M. Faghih, X. Gou and Z. Chen, Numerical study on the transient evolution of a premixed cool flame. Combust. Flame 187 (2018), pp. 129–136.
  • B. Wang, Z. Li, H.C. Lee, P. Dai and X. Gan, A computational study on the transient ignition and NTC behavior of non-premixed dimethyl ether/air counterflow under elevated pressure. Energy Fuels 34 (2020), pp. 6383–6391.
  • E. Mastorakos, T.A. Baritaud and T. Poinsot, Numerical simulations of autoignition in turbulent mixing flows. Combust. Flame 109 (1997), pp. 198–223.
  • R. Hilbert and D. Thevenin, Autoignition of turbulent non-premixed flames investigated using direct numerical simulations. Combust. Flame 128 (2002), pp. 22–37.
  • T. Jin, K.H. Luo, X. Wang, K. Luo and J. Fan, Dynamics of triple-flames in ignition of turbulent dual fuel mixture: A direct numerical simulation study. Proc. Combust. Inst. 37 (2019), pp. 4625–4633.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.