129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical simulation of turbulent premixed flames with the conditional source-term estimation model using Bernstein polynomial expansion

& ORCID Icon
Pages 151-171 | Received 29 Sep 2022, Accepted 31 Aug 2023, Published online: 25 Sep 2023

References

  • N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energy Combust. Sci. 10 (1984), pp. 319–339.
  • A.Y. Klimenko and R.W. Bilger, Conditional moment closure for turbulent combustion, Prog. Energy Combust. Sci. 25 (1999), pp. 595–687.
  • S.B. Pope, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci. 11 (1985), pp. 119–192.
  • M. Cleary and A.Y. Klimenko, A generalised multiple mapping conditioning approach for turbulent combustion, Flow Turbul. Combust. 82 (2009), pp. 477–491.
  • M.J. Cleary, A.Y. Klimenko, J. Janicka, and M. Pfitzner, A sparse-lagrangian multiple mapping conditioning model for turbulent diffusion flames, Proc. Comb. Inst. 32 (2009), pp. 1499–1507.
  • W.K. Bushe and H. Steiner, Conditional moment closure for large eddy simulation of non-premixed turbulent reacting flows, Phys. Fluids 11 (1999), pp. 1896–1906.
  • H. Steiner and W.K. Bushe, Large eddy simulation of a turbulent reacting jet with conditional source-term estimation, Phys. Fluids 13 (2001), pp. 754–769.
  • M. Wang, J. Huang, and W.K. Bushe, Simulation of a turbulent non-premixed flame using conditional source-term estimation with a trajectory generated low-dimensional manifold, Proc. Comb. Inst. 31 (2007), pp. 1701–1709.
  • J. Huang and W.K. Bushe, Simulation of an igniting methane jet using conditional source-term estimation with a trajectory generated low-dimensional manifold, Combust. Theory Model. 11 (2007), pp. 977–1008.
  • N. Wu, W. Bushe, and M. Davy, On the experimental validation of combustion simulations in turbulent non-premixed jets, Combust. Theory Model. 14 (2010), pp. 855–874.
  • J.W. Labahn and C. Devaud, Species and temperature predictions in a semi-industrial MILD furnace using a non-adiabatic conditional source-term estimation formulation, Combust. Theory Model. 21 (2017), pp. 466–486.
  • S.M. Ashrafizadeh and C. Devaud, Investigation of conditional source-term estimation coupled with a semi-empirical model for soot predictions in two turbulent flames, Combust. Theor. Model. 26 (2022), pp. 856–878.
  • B. Jin, R. Grout, and W. Bushe, Conditional source-term estimation as a method for chemical closure in premixed turbulent reacting flow, Flow Turbul. Combust. 81 (2008), pp. 563–582.
  • M.M. Salehi, W.K. Bushe, and K.J. Daun, Application of the conditional source-term estimation model for turbulence–chemistry interactions in a premixed flame, Combust. Theory Model. 16 (2012), pp. 301–320.
  • D. Dovizio, M.M. Salehi, and C.B. Devaud, RANS simulation of a turbulent premixed bluff body flame using conditional source-term estimation, Combust. Theory Model. 17 (2013), pp. 935–959.
  • N. Shahbazian, M.M. Salehi, C.P.T. Groth, O.L. Gulder, and W.K. Bushe, Performance of conditional source-term estimation model for LES of turbulent premixed flames in thin reaction zones regime, Proc. Combust. Inst. 35 (2015), pp. 1367–1375.
  • G.V. Nivarti, J. Huang, and W. Bushe, Conditional source-term estimation for the numerical simulation of turbulent combustion in homogeneous-charge SI engines, Tech. Rep., SAE Technical Paper, 2014.
  • H.P. Tsui and W.K. Bushe, Conditional source-term estimation using dynamic ensemble selection and parallel iterative solution, Combust. Theory Model. 20 (2016), pp. 812–833.
  • S. Hartl, D. Geyer, A. Dreizler, G. Magnotti, R.S. Barlow, and C. Hasse, Regime identification from Raman/Rayleigh line measurements in partially premixed flames, Combust. Flame 189 (2018), pp. 126–141.
  • D. Dovizio, A. Debbagh, and C. Devaud, RANS simulations of a series of turbulent V-shaped flames using conditional source-term estimation, Flow Turbul. Combust. 96 (2016), pp. 891–919.
  • D. Dovizio and C.B. Devaud, Doubly conditional source-term estimation (DCSE) for the modelling of turbulent stratified V-shaped flame, Combust. Flame 172 (2016), pp. 79–93.
  • D. Dovizio, J.W. Labahn, and C.B. Devaud, Doubly conditional source-term estimation (DCSE) applied to a series of lifted turbulent jet flames in cold air, Combust. Flame 162 (2015), pp. 1976–1986.
  • M. Mortada and C. Devaud, Large eddy simulation of lifted turbulent flame in cold air using doubly conditional source-term estimation, Combust. Flame 208 (2019), pp. 420–435.
  • T.F. Lu, C.S. Yoo, J.H. Chen, and C.K. Law, Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: A chemical explosive mode analysis, J. Fluid. Mech. 652 (2010), pp. 45–64.
  • C. Devaud, W.K. Bushe, and J. Bellan, The modeling of the turbulent reaction rate under high-pressure conditions: A priori evaluation of the conditional source-term estimation concept, Combust. Flame 207 (2019), pp. 205–221.
  • J. Labahn, D. Dovizio, and C. Devaud, Numerical simulation of the delft-jet-in-hot-coflow (DJHC) flame using conditional source-term estimation, Proc. Combust. Inst. 35 (2015), pp. 3547–3555.
  • J. Labahn and C. Devaud, Large eddy simulations (LES) including conditional source-term estimation (CSE) applied to two delft-jet-in-hot-coflow (DJHC) flames, Combust. Flame164 (2016), pp. 68–84.
  • X.H. Fang, R. Ismail, W.K. Bushe, and M. Davy, Simulation of ECN diesel spray a using conditional source-term estimation, Combust. Theory Model. 24 (2020), pp. 725–760.
  • A. Hussien and C. Devaud, Simulations of turbulent acetone spray flames using the conditional source term estimation (CSE) approach, Combust. Theory Model. 25 (2020), pp. 269–292.
  • A. Hussien and C. Devaud, Simulations of partially premixed turbulent ethanol spray flames using doubly conditional source term estimation (DCSE), Combust. Flame 239 (2021), p. 111651.
  • A.H. Mahdipour and M.M. Salehi, Localized conditional source-term estimation model for turbulent combustion, Combust. Flame 235 (2022), p. 111715.
  • T. Poinsot and D. Veynanate, Theoretical and numerical combustion, 2nd ed., R.T. Edwards, Bordeaux, France, 2005.
  • K.N.C. Bray, M. Champion, P.A. Libby, and N. Swaminathan, Finite rate chemistry and presumed PDF models for premixed turbulent combustion, Combust. Flame 146 (2006), pp. 665–673.
  • H.P. Tsui and W.K. Bushe, Linear eddy model formulated probability density function and scalar dissipation rate models for premixed combustion, Flow Turbul. Combust. 93 (2014), pp. 487–503.
  • M. Pfitzner and M. Klein, A near-exact analytic solution of progress variable and PDF for single-step arrhenius chemistry, Combust. Flame 226 (2021), pp. 380–395.
  • M. Pfitzner, A new analytic PDF for simulations of premixed turbulent combustion, Flow Turbul. Combust. 106 (2021), pp. 1213–1239.
  • M.M. Salehi and W.K. Bushe, Presumed PDF modeling for RANS simulation of turbulent premixed flames, Combust. Theor. Model. 14 (2010), pp. 381–403.
  • M.M. Salehi, W.K. Bushe, N. Shahbazian, and C.P.T. Groth, Modified laminar flamelet presumed probability density function for LES of premixed turbulent combustion, Proc. Comb. Inst. 34 (2013), pp. 1203–1211.
  • N. Swaminathan and R.W. Bilger, Analysis of conditional moment closure for turbulent premixed flame, Combust. Theory Model. 5 (2001), pp. 241–260.
  • S.B. Pope and U. Maas, Simplifying chemical kinetics: Trajectory generated low-dimensional manifolds, Tech. Rep., Cornell University Report No. FDA 93-11, 1993
  • U. Maas and S.B. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combust. Flame 88 (1992), pp. 239–264.
  • M. Wang, A. Frisque, J. Huang, and W.K. Bushe, Trajectory genrated low-dimensional manifolds generated using the stochastic particle method, Combust. Theory Model. 12 (2008), pp. 249–267.
  • J.W. Labahn and C.B. Devaud, Investigation of conditional source-term estimation applied to a non-premixed turbulent flame, Combust. Theory Model. 17 (2013), pp. 960–982.
  • J.A. van Oijen and L.P.H. de Goey, Modelling of premixed laminar flames using flamelet-generated manifolds, Combust. Sci. Technol. 161 (2000), pp. 113–137.
  • G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V.J. Lissianski, and Z. Qin, GRI-MECH 3.0, Tech. Rep., Available at http://www.me.berkeley.edu/gri_mech.
  • Z. Ren, S.B. Pope, A. Vladimirsky, and J.M. Guckenheimer, The invariant constrained equilibrium edge preimage curve method for the dimensional reduction of chemical kinetics, J. Chem. Phys. 124 (2006), p. 114111.
  • A. Mousemi, M. Jadidi, S.B. Dworkin, and W.K. Bushe, Application of machine learning in low-order manifold representation of chemistry in turbulent flames, Combust. Theory Model. 27 (2023), pp. 83–102.
  • M.D. Smooke, Reduced kinetic mechanisms and asymptotic approximations for methane-air flames: A topical volume, Springer, Berlin, Heidelberg, 1991.
  • S. Navarro-Martinez, A. Kronenburg, and F.D. Mare, Conditional moment closure for large eddy simulations, Flow Turbul. Combust. 75 (2005), pp. 245–247.
  • D. Farrace, K. Chung, S.S. Pandurangi, Y.M. Wright, K. Boulouchos, and N. Swaminathan, Unstructured LES-CMC modelling of turbulent premixed bluff body flames close to blow-off, Proc. Comb. Inst. 36 (2017), pp. 1977–1985.
  • D. Farrace, K. Chung, M. Bolla, Y.M. Wright, K. Boulouchos, and E. Mastorakos, A LES-CMC formulation for premixed flames including differential diffusion, Combust. Theor. Model. 22 (2018), pp. 411–431.
  • C.L. Lawson and R.J. Hanson, Solving least square problems, Prentice-Hall, Englewood Cliffs, New Jersey, 1974.
  • A.J. Aspden, M.S. Day, and J.B. Bell, Turbulence-flame interactions in lean premixed hydrogen: Transition to the distributed burning regime, J. Fluid Mech. 680 (2011), pp. 287–320.
  • A.H. Mahdipour and M.M. Salehi, A priori evaluation of the laminar flamelet decomposition model for turbulent premixed flames using DNS data, Flow Turbul. Combust. 108 (2022), pp. 149–180.
  • L. Vervisch, R. Hauguel, P. Domingo, and M. Rullaud, Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted non-premixed flame and RANS of jet-flame, J. Turbul. 5 (2004), pp. 1–36.
  • R. Prasad and J. Gore, An evaluation of flame surface density models for turbulent premixed jet flames, Combust. Flame 116 (1999), pp. 1–14.
  • Y.C. Chen, N. Peters, G.A. Schneemann, N. Wruck, U. Renz, and M.S. Mansour, The detailed flame structure of highly stretched turbulent premixed methane-air flames, Combust. Flame 107 (1996), pp. 223–244.
  • N. Peters, The turbulent burning velocity for large-scale and small-scale turbulence, J. Fluid Mech.384 (1999), pp. 107–132.
  • F.T. Yuen and Ö.L. Gülder, Premixed turbulent flame front structure investigation by Rayleigh scattering in the thin reaction zone regime, Proc. Combust. Inst. 32 (2009), pp. 1747–1754.
  • S.B. Pope, An explanation of the turbulent round-jet/plane-jet anomaly, AIAA J. 16 (1978), pp. 279–281.
  • A. Morse, Axisymmetric turbulent sheer flows with and without swirl, Ph.D. diss., University of London, 1980
  • B. Dally, A. Masri, R. Barlow, and G. Fiechtner, Instantaneous and mean compositional structure of bluff-body stabilized nonpremixed flames, Combust. Flame 114 (1998), pp. 119–148.
  • B. Merci, D. Roekaerts, B. Naud, and S.B. Pope, Comparative study of micromixing models in transported scalar PDF simulations of turbulent nonpremixed bluff body flames, Combust. Flame 146 (2006), pp. 109–130.
  • M.M. Salehi, Numerical simulation of turbulent premixed flames with conditional source-term estimation, Ph.D. diss., University of British Columbia, 2012.
  • G. Wang, M. Boileau, and D. Veynante, Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion, Combust. Flame 158 (2011), pp. 2199–2213.
  • R.P. Lindstedt and E.M. Vaos, Transport PDF modeling of high-reynolds-number premixed turbulent flames, Combust. Flame 145 (2006), pp. 495–511.
  • I. Langella and N. Swaminathan, Unstrained and strained flamelets for les of premixed combustion, Combust. Theory Model. 20 (2016), pp. 410–440.
  • H. Pitsch and L. Duchamp De Lageneste, Large eddy simulation of premixed turbulent combustion using a level-set approach, Proc. Comb. Inst. 29 (2002), pp. 2001–2008.
  • E. Knudsen and H. Pitsch, A dynamic model for the turbulent burning velocity for large eddy simulation of premixed combustion, Combust. Flame 154 (2008), pp. 740–760.
  • M. Ihme and H. Pitsch, Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation, Phys. Fluids 20 (2008), p. 055110.
  • F.E. Hernandez-Perez, F.T.C. Yuen, C.P.T. Groth, and O.L. Gulder, LES of a laboratory-scale turbulent premixed bunsen flame using FSD, PCM-FPI and thickened flame models, Proc. Comb. Inst. 33 (2011), pp. 1365–1371.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.