172
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Grid resolution requirement of chemical explosive mode analysis for large eddy simulations of premixed turbulent combustion

, , &
Pages 219-236 | Received 05 May 2023, Accepted 29 Sep 2023, Published online: 17 Oct 2023

References

  • N. Peters Turbulent combustion, Cambridge University Press, 2000.
  • A.M. Steinberg, P.E. Hamlington, and X. Zhao, Structure and dynamics of highly turbulent premixed combustion, Prog. Energy. Combust. Sci. 85 (2021), p. 100900.
  • T. Lu, C.S. Yoo, J. Chen, and C.K. Law, Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: A chemical explosive mode analysis, J. Fluid. Mech. 652 (2010), pp. 45–64.
  • S. Lam, Using csp to understand complex chemical kinetics, Combust. Sci. Technol. 89 (1993), pp. 375–404.
  • Z. Luo, C.S. Yoo, E.S. Richardson, J.H. Chen, C.K. Law, and T. Lu, Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow, Combust. Flame 159 (2012), pp. 265–274.
  • R. Shan, C.S. Yoo, J.H. Chen, and T. Lu, Computational diagnostics for n-heptane flames with chemical explosive mode analysis, Combust. Flame 159 (2012), pp. 3119–3127.
  • C. Xu, M.M. Ameen, S. Som, J.H. Chen, Z. Ren, and T. Lu, Dynamic adaptive combustion modeling of spray flames based on chemical explosive mode analysis, Combust. Flame 195 (2018), pp. 30–39.
  • C. Xu, J.W. Park, C.S. Yoo, J.H. Chen, and T. Lu, Identification of premixed flame propagation modes using chemical explosive mode analysis, Proc. Combust. Inst. 37 (2019), pp. 2407–2415.
  • D.A. Goussis, H.G. Im, H.N. Najm, S. Paolucci, and M. Valorani, The origin of cema and its relation to csp, Combust. Flame 227 (2021), pp. 396–401.
  • B. Savard, E.R. Hawkes, K. Aditya, H. Wang, and J.H. Chen, Regimes of premixed turbulent spontaneous ignition and deflagration under gas-turbine reheat combustion conditions, Combust. Flame 208 (2019), pp. 402–419.
  • C. Xu, A.Y. Poludnenko, X. Zhao, H. Wang, and T. Lu, Structure of strongly turbulent premixed n-dodecane–air flames: Direct numerical simulations and chemical explosive mode analysis, Combust. Flame 209 (2019), pp. 27–40.
  • K. Aditya, A. Gruber, C. Xu, T. Lu, A. Krisman, M.R. Bothien, and J.H. Chen, Direct numerical simulation of flame stabilization assisted by autoignition in a reheat gas turbine combustor, Proc. Combust. Inst. 37 (2019), pp. 2635–2642.
  • N.A.K. Doan, S. Bansude, K. Osawa, Y. Minamoto, T. Lu, J. Chen, and N. Swaminathan, Identification of combustion mode under mild conditions using chemical explosive mode analysis, Proc. Combust. Inst. 38 (2021), pp. 5415–5422.
  • S. Lai, C. Xu, M. Davy, and X. Fang, Flame acceleration and transition to detonation in a pre-/main-chamber combustion system, Phys. Fluids 34 (2022), p. 116105.
  • J. Ren, H. Wang, C. Xu, J.H. Chen, K. Luo, and J. Fan, DNS of the ignition process of n-heptane/air premixed combustion with low-temperature chemistry in turbulent boundary layer, Proc. Combust. Inst. 39(2) (2022), pp. 2239–2248.
  • Z. Yu and H. Zhang, Reaction front development from ignition spots in n-heptane/air mixtures: Low-temperature chemistry effects induced by ultrafine water droplet evaporation, Phys. Fluids 33 (2021), p. 083312.
  • Y. Zhang, Y. Kang, X. Lu, and Q. Wang, Numerical study on oscillatory propagation dynamics and physics near the limits of planar freely propagating premixed flames, Phys. Fluids 33 (2021), p. 083602.
  • Z. Huang and H. Zhang, Ignition and deflagration-to-detonation transition modes in ethylene/air mixtures behind a reflected shock, Phys. Fluids 34 (2022), p. 086105.
  • W. Wu, Y. Piao, Q. Xie, and Z. Ren, Flame diagnostics with a conservative representation of chemical explosive mode analysis, AIAA J. 57 (2019), pp. 1355–1363.
  • W. Xie, W. Wu, Z. Ren, H. Liu, and M. Ihme, Effects of evaporation on chemical reactions in counterflow spray flames, Phys. Fluids 33 (2021), p. 065115.
  • S. James, J. Zhu, and M. Anand, Large-eddy simulations as a design tool for gas turbine combustion systems, AIAA J. 44 (2006), pp. 674–686.
  • L.Y. Gicquel, G. Staffelbach, and T. Poinsot, Large eddy simulations of gaseous flames in gas turbine combustion chambers, Prog. Energy. Combust. Sci. 38 (2012), pp. 782–817.
  • Z. Chen, J. Wen, B. Xu, and S. Dembele, Large eddy simulation of a medium-scale methanol pool fire using the extended eddy dissipation concept, Int. J. Heat Mass Transf. 70 (2014), pp. 389–408.
  • P. Pal, C. Xu, G. Kumar, S.A. Drennan, B.A. Rankin, and S. Som, Large-eddy simulations and mode analysis of ethylene/air combustion in a non-premixed rotating detonation engine, in AIAA Propulsion and Energy 2020 Forum, 2020, p. 3876.
  • K. Zhang, Y. Shen, and C. Duwig, Finite rate simulations and analyses of wet/distributed flame structure in swirl-stabilized combustion, Fuel 289 (2021), p. 119922.
  • O. Schulz, E. Piccoli, A. Felden, G. Staffelbach, and N. Noiray, Autoignition-cascade in the windward mixing layer of a premixed jet in hot vitiated crossflow, Combust. Flame 201 (2019), pp. 215–233.
  • P. Zhang, J.W. Park, B. Wu, and X. Zhao, Large eddy simulation/thickened flame model simulations of a lean partially premixed gas turbine model combustor, Combust. Theory Model. 25 (2021), pp. 1296–1323.
  • S.B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows, New. J. Phys. 6 (2004), p. 35.
  • B. Wu, X. Zhao, C. Xu, and T. Lu, Analysis of the chemical states of a bluff-body stabilized premixed flame near blowoff , in AIAA Scitech 2019 Forum, American Institute of Aeronautics and Astronautics, San Diego, California, 2019.
  • P. Sagaut, Large eddy simulation for incompressible flows: An introduction, Springer Science & Business Media, 2006.
  • D.G. Goodwin, H.K. Moffat, and R.L. Speth, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, 2009.
  • K.E. Niemeyer, N.J. Curtis, and C.J. Sung, pyjac: Analytical jacobian generator for chemical kinetics, Comput. Phys. Commun. 215 (2017), pp. 188–203.
  • C. Bowman, R. Hanson, W. Gardiner, V. Lissianski, M. Frenklach, M. Goldenberg, D.M. Golden, H. Wang, and G. Smith, Gri-mech 2. 11: An optimized detailed chemical reaction mechanism for methane combustion and no formation and reburning, NASA, 1997, (19980005146).
  • H. Liu, Z. Yin, W. Xie, B. Zhang, J. Le, and H. Liu, Numerical and analytical assessment of finite rate chemistry models for les of turbulent premixed flames, Flow Turbul. Combust. 109 (2022), pp. 435–458.
  • J. Warnatz, U. Maas, and R.W. Dibble, Combustion, Springer, 2006.
  • I.S. Ertesvåg and B.F. Magnussen, The eddy dissipation turbulence energy cascade model, Combust. Sci. Technol. 159 (2000), pp. 213–235.
  • V. Sabelnikov and C. Fureby, Les combustion modeling for high re flames using a multi-phase analogy, Combust. Flame 160 (2013), pp. 83–96.
  • O. Colin, F. Ducros, D. Veynante, and T. Poinsot, A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids 12 (2000), pp. 1843–1863.
  • A. Yoshizawa, Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling, Phys. Fluids 29 (1986), pp. 2152–2164.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.