163
Views
2
CrossRef citations to date
0
Altmetric
Articles

A combustion mechanism reduction method based on entropy production analysis in fuel auto-ignition and laminar flames

, &
Pages 262-281 | Received 29 May 2023, Accepted 24 Oct 2023, Published online: 02 Nov 2023

References

  • Y. Chang, M. Jia, Y. Li, Y. Liu, M. Xie, H. Wang, and R.D. Reitz, Development of a skeletal mechanism for diesel surrogate fuel by using a decoupling methodology, Combust. Flame 162 (2015), pp. 3785–3802.
  • X. Dong, Y. Chang, B. Niu, and M. Jia, Development of a practical reaction model of polycyclic aromatic hydrocarbon (PAH) formation and oxidation for diesel surrogate fuel, Fuel 267 (2020), pp. 117159.
  • L. Zhang, K. Yang, R. Zhao, M. Chen, Y. Ying, and D. Liu, Nanostructure and reactivity of soot from biofuel 2,5-dimethylfuran pyrolysis with CO2 additions, Front. Energy 16 (2022), pp. 292–306.
  • Y. Chang, M. Jia, B. Niu, X. Dong, and P. Wang, Reduction of large-scale chemical mechanisms using global sensitivity analysis on reaction class/sub-mechanism, Combust. Flame 212 (2020), pp. 355–366.
  • P. Wang, Y. Chang, B. Niu, X. Dong, and M. Jia, Influence of the functional group of fuels on the construction of skeletal chemical mechanisms: A case study of 1-hexane, 1-hexene, and 1-hexanol, Combust. Flame 221 (2020), pp. 120–135.
  • B. Niu, M. Jia, Y. Chang, H. Duan, X. Dong, and P. Wang, Construction of reduced oxidation mechanisms of polyoxymethylene dimethyl ethers (PODE1–6) with consistent structure using decoupling methodology and reaction rate rule, Combust. Flame 232 (2021), pp. 111534.
  • J. Li, H. Liu, X. Liu, Y. Ye, H. Wang, X. Wang, H. Zhao, and M. Yao, Development of a simplified n-heptane/methane model for high-pressure direct-injection natural gas marine engines, Front. Energy 15 (2021), pp. 405–420.
  • W. Wang and X. Gou, A mechanism reduction method integrating path flux analysis with multi generations and sensitivity analysis, Combust. Sci. Technol. 189 (2017), pp. 24–42.
  • J. Wang, Y. Li, M. Liu, and L. Ji, Statistical degree screening method for combustion mechanism reduction, Combust. Flame 230 (2021), pp. 111440.
  • T. Lu and C.K. Law, A directed relation graph method for mechanism reduction, Proc. Combust. Inst. 30 (2005), pp. 1333–1341.
  • T. Turányi, Sensitivity analysis of complex kinetic systems tools and applications, J. Math. Chem. 5 (1990), pp. 203–248.
  • W. Sun, Z. Chen, X. Gou, and Y. Ju, A path flux analysis method for the reduction of detailed chemical kinetic mechanisms, Combust. Flame 157 (2010), pp. 1298–1307.
  • W. Han and X. Gou, Improved path flux analysis mechanism reduction method for high and low temperature oxidation of hydrocarbon fuels, Combust. Theor. Model 24 (2020), pp. 1090–1107.
  • B. Wang, S. Dong, Z. Jiang, W. Gao, Z. Wang, J. Li, C. Yang, Z. Wang, and X. Cheng, Development of a reduced chemical mechanism for ammonia/n-heptane blends, Fuel 338 (2023), pp. 127358.
  • F. Minuzzi and J.M. de Pinho, A new skeletal mechanism for ethanol using a modified implementation methodology based on directed relation graph (DRG) technique, J. Braz. Soc. Mech. Sci. Eng. 42 (2020), pp. 105.
  • T. Turányi, A.S. Tomlin, and M.J. Pilling, On the error of the quasi-steady-state approximation, J. Phys. Chem. 97 (1993), pp. 163–172.
  • M. Valorani, F. Creta, F. Donato, H.N. Najm, and D.A. Goussis, Skeletal mechanism generation and analysis for n-heptane with CSP, Proc. Combust. Inst. 31 (2007), pp. 483–490.
  • U. Maas and S.B. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combust. Flame 88 (1992), pp. 239–264.
  • T. Lu and C.K. Law, Toward accommodating realistic fuel chemistry in large-scale computations, Prog. Energy Combust. Sci. 35 (2009), pp. 192–215.
  • P. Pepiot-Desjardins and H. Pitsch, An automatic chemical lumping method for the reduction of large chemical kinetic mechanisms, Combust. Theor. Model 12 (2008), pp. 1089–1108.
  • A. Stagni, A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, Lumping and reduction of detailed kinetic schemes: An effective coupling, Ind. Eng. Chem. Res. 53 (2014), pp. 9004–9016.
  • S.B. Pope, Small scales, many species and the manifold challenges of turbulent combustion, Proc. Combust. Inst. 34 (2013), pp. 1–31.
  • G.P. Beretta, J.C. Keck, M. Janbozorgi, and H. Metghalchi, The rate-controlled constrained-equilibrium approach to far-from-local-equilibrium thermodynamics, Entropy 14 (2012), pp. 92–130.
  • J.C. Keck, Rate-controlled constrained-equilibrium theory of chemical reactions in complex systems, Prog. Energy Combust. Sci. 16 (1990), pp. 125–154.
  • M. Kooshkbaghi, C.E. Frouzakis, K. Boulouchos, and I.V. Karlin, Entropy production analysis for mechanism reduction, Combust. Flame 161 (2014), pp. 1507–1515.
  • L. Acampora, M. Kooshkbaghi, C.E. Frouzakis, and F.S. Marra, Generalized entropy production analysis for mechanism reduction, Combust. Theor. Model 23 (2019), pp. 197–209.
  • K.K. Kuo, Principles of combustion, 2nd ed., John Wiley & Sons, Hoboken, New Jersey, 2005.
  • E. Ranzi, A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A.P. Kelley, and C.K. Law, Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels, Prog. Energy Combust. Sci. 38 (2012), pp. 468–501.
  • D.G. Goodwin, H.K. Moffat, I. Schoegl, R.L. Speth, and B.W. Weber, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. software Available at: https://www.cantera.org
  • A. Emadi and M. Emami, Analysis of entropy generation in a hydrogen-enriched turbulent non-premixed flame, Int. J. Hydrogen Energy 38 (2013), pp. 5961–5973.
  • Y. Liu, J. Zhang, D. Ju, L. Shi, and D. Han, Second-law thermodynamic analysis on non-premixed counterflow methane flames with hydrogen addition, J. Therm. Anal. Calorim. 139 (2019), pp. 2577–2583.
  • J. Zhang, Z. Huang, K. Min, and D. Han, Dilution, thermal, and chemical effects of carbon dioxide on the exergy destruction in n-heptane and Iso-octane autoignition processes: A numerical study, Energy Fuels 32 (2018), pp. 5559–5570.
  • J. Zhang, Z. Huang, and D. Han, Exergy losses in auto-ignition processes of DME and alcohol blends, Fuel 229 (2018), pp. 116–125.
  • Y. Liu, J. Zhang, D. Ju, Z. Huang, and D. Han, Analysis of exergy losses in laminar premixed flames of methane/hydrogen blends, Int. J. Hydrogen Energy 44 (2019), pp. 24043–24053.
  • D. Jiang, W. Yang, and J. Teng, Entropy generation analysis of fuel lean premixed CO/H2/air flames, Int. J. Hydrogen Energy 40 (2015), pp. 5210–5220.
  • K. Nishida, T. Takagi, and S. Kinoshita, Analysis of entropy generation and exergy loss during combustion, Proc. Combust. Inst. 29 (2002), pp. 869–874.
  • S.J. Lorentzen and I.S. Ertesvåg, Entropy generation in an opposed-flow laminar non-premixed flame—effects of using reduced and global chemical mechanisms for methane–air and syngas–air combustion, Fuel 345 (2023), pp. 128263.
  • T. Nagy and T. Turányi, Reduction of very large reaction mechanisms using methods based on simulation error minimization, Combust. Flame 156 (2009), pp. 417–428.
  • X. You, F.N. Egolfopoulos, and H. Wang, Detailed and simplified kinetic models of n-dodecane oxidation: The role of fuel cracking in aliphatic hydrocarbon combustion, Proc. Combust. Inst. 32 (2009), pp. 403–410.
  • S.S. Vasu, D.F. Davidson, Z. Hong, V. Vasudevan, and R.K. Hanson, n-Dodecane oxidation at high-pressures: Measurements of ignition delay times and OH concentration time-histories, Proc. Combust. Inst. 32 (2009), pp. 173–180.
  • E. Ranzi, A. Frassoldati, A. Stagni, M. Pelucchi, A. Cuoci, and T. Faravelli, Reduced kinetic schemes of complex reaction systems: Fossil and biomass-derived transportation fuels, Int. J. Chem. Kinet. 46 (2014), pp. 512–542.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.