474
Views
0
CrossRef citations to date
0
Altmetric
Articles

Asymptotic analysis of detonation development at SI engine conditions using computational singular perturbation

, , , &
Pages 282-316 | Received 23 Mar 2023, Accepted 24 Oct 2023, Published online: 20 Nov 2023

References

  • M.D. Lorenzo, P. Brequigny, F. Foucher, and C. Mounaim-Rousselle, Turbulent flame speed of a gasoline surrogate in conditions representative of modern downsized spark-ignition engine, Combust. Flame. 240 (2022), p. 112041.
  • S. Baek, H. Lee, and K. Lee, Fuel efficiency and exhaust characteristics of turbocharged diesel engine equipped with an electric supercharger, Energy 214 (2021), p. 119049.
  • X. Zhao, Z. Zhu, Z. Zheng, Z. Yue, H. Wang, and M. Yao, Effects of flame propagation speed on knocking and knock-limited combustion in a downsized spark ignition engine, Fuel 293 (2021), p. 120407.
  • Y. Wang, H. Wei, L. Zhou, X. Zhang, and L. Zhong, Effects of reactivity inhomogeneities on knock combustion in a downsized spark-ignition engine, Fuel 278 (2020), p. 118317.
  • J.E. Dec, Y. Yang, and N. Dronniou, Improving efficiency and using E10 for higher loads in boosted engines, Sae Int. J. Engines 5 (2012), pp. 1009–1032.
  • J.R. Serrano, P. Piqueras, J. De La Morena, A. Gómez-Vilanova, and S. Guilain, Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines, Energy 215 (2021), p. 119122.
  • M.B. Luong, F.E. Hernández Pérez, and H.G. Im, Prediction of ignition modes of NTC-fuel/air mixtures with temperature and concentration fluctuations, Combust. Flame.213 (2020), pp. 382–393.
  • Z. Wang, Y. Qi, X. He, J. Wang, S. Shuai, and C.K. Law, Analysis of pre-ignition to super-knock: Hotspot-induced deflagration to detonation, Fuel 144 (2015), pp. 222–227.
  • K. Morganti, M. Abdullah, A. Alzubail, Y. Viollet, R. Head, J. Chang, and G. Kalghatgi, Improving the efficiency of conventional spark-ignition engines using octane-on-demand combustion-part I: Engine studies, SAE Technical Paper 2016–01–0679, 2016.
  • G. Kalghatgi, K. Morganti, I. Algunaibet, M. Sarathy, and R. Dibble, Knock prediction using a simple model for ignition delay, Shock 1 (2016), p. 3.
  • L. Chen, T. Li, T. Yin, and B. Zheng, A predictive model for knock onset in spark-ignition engines with cooled EGR, Energy Conversion Manage. 87 (2014), pp. 946–955.
  • Y. Ze'ldovich, Regime classification of an exothermic reaction with nonuniform initial conditions, Combust. Flame 39 (1980), pp. 211–214.
  • J.H.S. Lee, The detonation phenomenon, Cambridge University Press, Cambridge, 2008.
  • Z. Wang, H. Liu, and R.D. Reitz, Knocking combustion in spark-ignition engines, Prog. Energy. Combust. Sci. 61 (2017), pp. 78–112.
  • Z. Gong, L. Feng, and Z. Wang, Experimental and numerical study of the effect of injection strategy and intake valve lift on super-knock and engine performance in a boosted gdi engine, Fuel 249 (2019), pp. 309–325.
  • P. Dai and Z. Chen, Effects of nox addition on autoignition and detonation development in dme/air under engine-relevant conditions, Proc. Combust. Inst. 37 (2019), pp. 4813–4820.
  • H. Liu, Z. Wang, Y. Qi, X. He, Y. Wang, and J. Wang, Super-knock suppression for highly turbocharged spark ignition engines using the fuel of propane or methanol, Energy 169 (2019), pp. 1112–1118.
  • M.J. Mubarak Ali, F. Hernandez Perez, S. Vedharaj, R. Vallinayagam, R. Dibble, and H. Im, Effect of timing and location of hotspot on super knock during pre-ignition, SAE Technical Paper 2017–01–0686, 2017.
  • P. Dai, Z. Chen, X. Gan, and M.A. Liberman, Autoignition and detonation development from a hot spot inside a closed chamber: Effects of end wall reflection, Proc. Combust. Inst. 38 (2021), pp. 5905–5913.
  • D. Bradley, C. Morley, X.J. Gu, and D.R. Emerson, Amplified pressure waves during autoignition: Relevance to cai engines, SAE Trans. 111 (2002), pp. 2679–2690.
  • D. Bradley and G. Kalghatgi, Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines, Combust. Flame. 156 (2009), pp. 2307–2318.
  • Gautam T Kalghatgi and Derek Bradley, Pre-ignition and ‘super-knock’ in turbo-charged spark-ignition engines, Int. J. Engine Res. 13 (2012), pp. 399–414.
  • C. Qi, P. Dai, H. Yu, and Z. Chen, Different modes of reaction front propagation in n-heptane/air mixture with concentration non-uniformity, Proc. Combust. Inst. 36 (2017), pp. 3633–3641.
  • J. Su, P. Dai, and Z. Chen, Detonation development from a hot spot in methane/air mixtures: Effects of kinetic models, Int. J. Engine Res. 22(8) (2020), p. 146808742094461.
  • Y. Gao, P. Dai, and Z. Chen, Numerical studies on autoignition and detonation development from a hot spot in hydrogen/air mixtures, Combust. Theory Modell. 24 (2020), pp. 245–261.
  • A. Sow, B.J. Lee, F.E. Hernández Pérez, and H.G. Im, Detonation onset in a thermally stratified constant volume reactor, Proc. Combust. Inst. 37 (2019), pp. 3529–3536.
  • M.B. Luong and H.G. Im, Prediction of the developing detonation in an ntc-fuel/air mixture with temperature inhomogeneities under engine conditions, Proc. Combust. Inst. 39 (2023), pp. 4979–4988.
  • N. Peters, B. Kerschgens, and G. Paczko, Super-knock prediction using a refined theory of turbulence, Sae Int. J. Engines 6 (2013), pp. 953–967.
  • J. Rudloff, J.M. Zaccardi, S. Richard, and J.M. Anderlohr, Analysis of pre-ignition in highly charged SI engines: Emphasis on the auto-ignition mode, Proc. Combust. Inst. 34 (2013), pp. 2959–2967.
  • M.B. Luong and H.G. Im, Prediction of ignition modes in shock tubes relevant to engine conditions, in Engines and Fuels for Future Transport, Springer, Singapore, 2022, pp. 369–393. https://doi.org/10.1007/978-981-16-8717-4_15
  • M. Figueroa-Labastida, M.B. Luong, J. Badra, H.G. Im, and A. Farooq, Experimental and computational studies of methanol and ethanolpreignition behind reflected shock waves, Combust. Flame 234 (2021), p. 111621.
  • F. Takens, Partially hyperbolic fixed points, Topology 10 (1971), pp. 133–147.
  • S.H. Lam and D.A. Goussis, Understanding complex chemical kinetics with computational singular perturbation, in Symposium (International) on Combustion, Vol. 22, Elsevier, 1989, pp. 931–941. https://doi.org/10.1016/S0082-0784(89)80102-X
  • S.H. Lam and D. Coussis, Conventional asymptotics and computational singular perturbation for simplified kinetics modelling, in Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, Springer, Berlin, 2005, pp. 227–242. https://doi.org/10.1007/BFb0035372
  • M. Hadjinicolaou and D.A. Goussis, Asymptotic solution of stiff pdes with the csp method: The reaction diffusion equation, SIAM. J. Sci. Comput. 20 (1998), pp. 781–810.
  • J. Prager, H.N. Najm, M. Valorani, and D. Goussis, Structure of n-heptane/air triple flames in partially-premixed mixing layers, Combust. Flame. 158 (2011), pp. 2128–2144.
  • D.G. Patsatzis and D.A. Goussis, A new michaelis-menten equation valid everywhere multi-scale dynamics prevails, Math. Biosci. 315 (2019), p. 108220.
  • D.G. Patsatzis, D.T. Maris, and D.A. Goussis, Asymptotic analysis of a target-mediated drug disposition model: Algorithmic and traditional approaches, Bull. Math. Biol. 78 (2016), pp. 1121–1161.
  • K.J. Richards, P.K. Senecal, and E. Pomraning, Converge 3.0.13, Convergent Science, Madison, WI, 2023.
  • F.E.H. PÉRez, N. Mukhadiyev, X. Xu, A. Sow, B.J. Lee, R. Sankaran, and H.G. Im, Direct numerical simulations of reacting flows with detailed chemistry using many-core/gpu acceleration, Comput. Fluids. 173 (2018), pp. 73–79.
  • S. Desai, Y.J. Kim, W. Song, M.B. Luong, F.E.H. PÉRez, R. Sankaran, and H.G. Im, Direct numerical simulations of turbulent reacting flows with shock waves and stiff chemistry using many-core/GPU acceleration, Comput. Fluids. 215 (2021), p. 104787.
  • M. Jaasim, E.A. Tingas, F.E.H. PÉRez, and H.G. Im, Computational singular perturbation analysis of super-knock in SI engines, Fuel 225 (2018), pp. 184–191.
  • C. Netzer, L. Seidel, M. Pasternak, H. Lehtiniemi, C. Perlman, F. Ravet, and F. Mauss, Three-dimensional computational fluid dynamics engine knock prediction and evaluation based on detailed chemistry and detonation theory, Int. J. Engine Res. 19 (2018), pp. 33–44.
  • P. Pal, S. Demir, P. Kundu, and S. Som, Large-eddy simulations of methane-oxygen combustion in a rotating detonation rocket engine, in AIAA Propulsion and Energy 2021 Forum, 2021, p. 3642. https://doi.org/10.2514/6.2021-3642
  • N.O. Attal and G. Kumar, Deflagration to detonation transition in two-dimensional obstructed channels, in AIAA Scitech 2022 Forum, AIAA SCITECH 2022 Forum, San Diego, CA, 2022, p. 0392. https://doi.org/10.2514/6.2022-0392
  • P.K. Senecal, E. Pomraning, K.J. Richards, T.E. Briggs, C.Y. Choi, R.M. Mcdavid, and M.A. Patterson, Multi-dimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry, SAE Technical Paper 2003–01–1043, 2003.
  • M.B. Luong, S. Desai, F.E.H. PÉRez, R. Sankaran, B. Johansson, and H.G. Im, A statistical analysis of developing knock intensity in a mixture with temperature inhomogeneities, Proc. Combust. Inst. 38 (2021), pp. 5781–5789.
  • M.B. Luong, S. Desai, F.E. HernÁndez PÉrez, R. Sankaran, B. Johansson, and H.G. Im, Effects of turbulence and temperature fluctuations on knock development in an ethanol/air mixture, Flow Turbul. Combust 106 (2021), pp. 575–595.
  • A. Bhagatwala, J.H. Chen, and T. Lu, Direct numerical simulations of Hcci/Saci with ethanol, Combust. Flame. 161 (2014), pp. 1826–1841.
  • M.B. Luong and H.G. Im, Effects of low-temperature chemistry on direct detonation initiation by a hot spot under engine conditions, Proc. Combust. Inst. 39 (2023), pp. 4989–4999.
  • M. Frenklach, Modeling, in Combustion Chemistry, W.C. Gardiner, ed., Springer, New York, NY, 1984, pp. 423–453.
  • S. Vajda, P. Valko, and T. Turanyi, Principal component analysis of kinetic models, Int. J. Chem. Kinet. 17 (1985), pp. 55–81.
  • J.C. Sutherland and A. Parente, Combustion modeling using principal component analysis, Proc. Combust. Inst. 32 (2009), pp. 1563–1570.
  • M. Valorani, S. Paolucci, E. Martelli, T. Grenga, and P.P. Ciottoli, Dynamical system analysis of ignition phenomena using the tangential stretching rate concept, Combust. Flame. 162 (2015), pp. 2963–2990.
  • M. Valorani, P.P. Ciottoli, and R.M. Galassi, Tangential stretching rate (TSR) analysis of non premixed reactive flows, Proc. Combust. Inst. 36 (2017), pp. 1357–1367.
  • D.A. Goussis, H.G. Im, H.N. Najm, S. Paolucci, and M. Valorani, The origin of cema and its relation to csp, Combust. Flame. 227 (2021), pp. 396–401.
  • M. Valorani, F. Creta, P.P. Ciottoli, R. Malpica Galassi, D. Goussis, H. Najm, S. Paolucci, H.G. Im, E.A. Tingas, D. Manias, A. Parente, Z. Li, and T. Grenga, Computational singular perturbation method and tangential stretching rate analysis of large scale simulations of reactive flows: Feature tracking, time scale characterization, and cause/effect identification. Part 1, Basic concepts, in Data Analysis for Direct Numerical Simulations of Turbulent Combustion, Springer, Cham, 2020, pp. 43–64. https://doi.org/10.1007/978-3-030-44718-2_3
  • M. Valorani, F. Creta, P.P. Ciottoli, R. Malpica Galassi, D. Goussis, H. Najm, S. Paolucci, H.G. Im, E.A. Tingas, D. Manias, A. Parente, Z. Li, and T. Grenga, Computational singular perturbation method and tangential stretching rate analysis of large scale simulations of reactive flows: Feature tracking, time scale characterization, and cause/effect identification. Part 2, Analyses of ignition systems, laminar and turbulent flames, in Data Analysis for Direct Numerical Simulations of Turbulent Combustion, Springer, Cham, 2020, pp. 65–88. https://doi.org/10.1007/978-3-030-44718-2_4
  • E.A. Tingas, D.C. Kyritsis, and D.A. Goussis, Autoignition dynamics of dme/air and etoh/air homogeneous mixtures, Combust. Flame. 162 (2015), pp. 3263–3276.
  • E.A. Tingas, The chemical dynamics of hydrogen/hydrogen peroxide blends diluted with steam at compression ignition relevant conditions, Fuel 296 (2021), p. 120594.
  • K.K. Yalamanchi, E.A. Tingas, H.G. Im, and S.M. Sarathy, Screening gas-phase chemical kinetic models: Collision limit compliance and ultrafast timescales, Int. J. Chem. Kinet. 52 (2020), pp. 599–610.
  • E.A. Tingas, D.C. Kyritsis, and D.A. Goussis, H 2/air autoignition dynamics around the third explosion limit, J. Energy Eng. 145 (2019), p. 04018074.
  • D.A. Goussis and M. Valorani, The appropriate context for the analysis of the explosive mode in reactive systems, J. Energy Eng. 149 (2023), p. 04023039.
  • H.N. Najm, M. Valorani, D.A. Goussis, and J. Prager, Analysis of methane–air edge flame structure, Combust. Theory Modell. 14 (2010), pp. 257–294.
  • E.A. Tingas, Computational analysis of the effect of hydrogen peroxide addition on premixed laminar hydrogen/air flames, Fuel 302 (2021), p. 121081.
  • W. Song, E.A. Tingas, and H.G. Im, A computational analysis of methanol autoignition enhancement by dimethyl ether addition in a counterflow mixing layer, Combust. Flame.195 (2018), pp. 84–98.
  • D.M. Manias, E.A. Tingas, Y. Minamoto, and H.G. Im, Topological and chemical characteristics of turbulent flames at mild conditions, Combust. Flame. 208 (2019), pp. 86–98.
  • D.M. Manias, E.A. Tingas, F.E.H. PÉRez, R.M. Galassi, P.P. Ciottoli, M. Valorani, and H.G. Im, Investigation of the turbulent flame structure and topology at different Karlovitz numbers using the tangential stretching rate index, Combust. Flame. 200 (2019), pp. 155–167.
  • M. Valorani, F. Creta, and D.A. Goussis, Local and global manifolds in stiff reaction-diffusion systems, in Computational Fluid and Solid Mechanics 2003, Elsevier, 2003, pp. 1548–1551. https://doi.org/10.1016/B978-008044046-0.50378-X
  • D.A. Goussis, M. Valorani, F. Creta, and H.N. Najm, Reactive and reactive-diffusive time scales in stiff reaction-diffusion systems, Progress Comput. Fluid Dyn., Int. J. 5 (2005), pp. 316–326.
  • M. Valorani, H.N. Najm, and D.A. Goussis, Csp analysis of a transient flame-vortex interaction: Time scales and manifolds, Combust. Flame. 134 (2003), pp. 35–53.
  • R.M. Galassi, Pycsp: A python package for the analysis and simplification of chemically reacting systems based on computational singular perturbation, Comput. Phys. Commun. 276 (2022), p. 108364.
  • C. Safta, H.N. Najm, and O. Knio, Tchem-a software toolkit for the analysis of complex kinetic models, Tech. Rep., Sandia National Lab.(SNL-CA), Livermore, CA (USA), 2011.
  • Z. Wang, H. Liu, T. Song, Y. Qi, X. He, S. Shuai, and J. Wang, Relationship between super-knock and pre-ignition, Int. J. Engine Res. 16 (2015), pp. 166–180.
  • S. Farjam and B. Savard, Ignition and flame stabilization of n-dodecane turbulent premixed flames under spray a thermochemical conditions, Combust. Flame. 242 (2022), p. 112133.
  • Z. Huang, M.J. Cleary, Z. Ren, and H. Zhang, Large eddy simulation of a supersonic lifted hydrogen flame with sparse-Lagrangian multiple mapping conditioning approach, Combust. Flame. 238 (2022), p. 111756.
  • J.H. Kim, G.H. Yu, S.H. Chung, and C.S. Yoo, A DNS study of ignition characteristics of a lean PRF/air mixture with CH 2O and H 2O 2 addition under HCCI combustion-relevant conditions, Combust. Flame. 234 (2021), p. 111654.
  • Z. Zhang, A. Abdelsamie, C. Chi, D. Thevenin, and K.H. Luo, Combustion mode and mixing characteristics of a reacting jet in crossflow, Energy. Fuels. 35 (2021), pp. 13325–13337.
  • H. Wang, Z. Wang, K. Luo, E.R. Hawkes, J.H. Chen, and J. Fan, Direct numerical simulation of turbulent boundary layer premixed combustion under auto-ignitive conditions, Combust. Flame. 228 (2021), pp. 292–301.
  • M. Zhao, Z. Ren, and H. Zhang, Pulsating detonative combustion in n-heptane/air mixtures under off-stoichiometric conditions, Combust. Flame. 226 (2021), pp. 285–301.
  • A. Krisman, P. Meagher, X. Zhao, J.W. Park, T. Lu, and J.H. Chen, A direct numerical simulation of jet a flame kernel quenching, Combust. Flame. 225 (2021), pp. 349–363.
  • A. Sow, S.M. Lau-Chapdelaine, and M. Radulescu, The effect of the polytropic index γ on the structure of gaseous detonations, Proc. Combust. Inst. 38 (2021), pp. 3633–3640.
  • J. Shi, Y. Xu, W. Ren, and H. Zhang, Critical condition and transient evolution of methane detonation extinction by fine water droplet curtains, Fuel 315 (2022), p. 123133.