104
Views
0
CrossRef citations to date
0
Altmetric
Articles

Stochastic characterisation of unstable lean hydrogen–air annular premixed flames

Pages 317-343 | Received 10 May 2023, Accepted 05 Oct 2023, Published online: 29 Nov 2023

References

  • A.A. Konnov, A. Mohammad, V.R. Kishore, N.I. Kim, C. Prathap, and S. Kumar, A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+air mixtures, Prog. Energy Combust. Sci. 68 (2018), pp. 197–267.
  • G. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames – I. Derivation of basic equations, Acta Astronaut. 4 (1977), pp. 1177–1206.
  • G. Joulin and P. Clavin, Linear stability analysis of nonadiabatic flames: Diffusional-thermal model, Combust. Flame 35 (1979), pp. 139–153.
  • P.D. Ronney, Near-limit flame structures at low Lewis number, Combust. Flame 82 (1990), pp. 1–14.
  • F. Liu, X. Bao, J. Gu, and R. Chen, Onset of cellular instabilities in spherically propagating hydrogen-air premixed laminar flames, Int. J. Hydrog. Energy 37 (2012), pp. 11458–11465.
  • J. Goulier, A. Comandini, F. Halter, and N. Chaumeix, Experimental study on turbulent expanding flames of lean hydrogen/air mixtures, Proc. Combust. Inst. 36 (2017), pp. 2823–2832.
  • R. Grosseuvres, A. Comandini, A. Bentaib, and N. Chaumeix, Combustion properties of H 2/N 2/O 2/steam mixtures, Proc. Combust. Inst. 37 (2019), pp. 1537–1546.
  • F. Tinaut, M. Reyes, A. Melgar, and B. Giménez, Optical characterization of hydrogen-air laminar combustion under cellularity conditions, Int. J. Hydrog. Energy 44 (2019), pp. 12857–12871.
  • W. Jin, J. Wang, Y. Nie, S. Yu, and Z. Huang, Experimental study on flame instabilities of laminar premixed CH 4/H 2/air non-adiabatic flat flames, Fuel 159 (2015), pp. 599–606.
  • W. Jin, J. Wang, S. Yu, Y. Nie, Y. Xie, and Z. Huang, Cellular instabilities of non-adiabatic laminar flat methane/hydrogen oxy-fuel flames highly diluted with CO 2, Fuel 143 (2015), pp. 38–46.
  • A. Kaewpradap and S. Kadowaki, Instability influenced by CO 2 and equivalence ratio in oxyhydrogen flames on flat burner, Combust. Sci. Technol. 189 (2017), pp. 438–452.
  • W. Jin, J. Wang, W. Zhang, X. Cai, Y. Nie, and Z. Huang, Investigation of the heat loss effect on cellular flames via proper orthogonal decomposition, Combust. Sci. Technol. 190 (2018), pp. 803–822.
  • T. Howarth and A. Aspden, An empirical characteristic scaling model for freely-propagating lean premixed hydrogen flames, Combust. Flame 237 (2022), p. 111805.
  • L. Berger, A. Attili, and H. Pitsch, Intrinsic instabilities in premixed hydrogen flames: Parametric variation of pressure, equivalence ratio, and temperature. Part 1 – Dispersion relations in the linear regime, Combust. Flame 240 (2022), p. 111935.
  • L. Berger, A. Attili, and H. Pitsch, Intrinsic instabilities in premixed hydrogen flames: Parametric variation of pressure, equivalence ratio, and temperature. Part 2 – Non-linear regime and flame speed enhancement, Combust. Flame 240 (2022), p. 111936.
  • D. Michaels and A.F. Ghoniem, Leading edge dynamics of lean premixed flames stabilized on a bluff body, Combust. Flame 191 (2018), pp. 39–52.
  • L. da Costa Ramos, L.F. Figueira da Silva, F. Di Meglio, and V. Morgenthaler, Modelling of pulsating inverted conical flames: A numerical instability analysis, Combust. Theory Model 26 (2022), pp. 260–288.
  • F. Zhang, T. Zirwes, Y. Wang, Z. Chen, H. Bockhorn, D. Trimis, and D. Stapf, Dynamics of premixed hydrogen/air flames in unsteady flow, Phys. Fluids 34 (2022), p. 085121.
  • J. Pathak, A. Wikner, R. Fussell, S. Chandra, B.R. Hunt, M. Girvan, and E. Ott, Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model, Chaos 28 (2018), p. 041101.
  • L. da Costa Ramos, F. Di Meglio, V. Morgenthaler, L.F. Figueira da Silva, and P. Bernard, Numerical design of Luenberger observers for nonlinear systems, in 2020 59th IEEE Conference on Decision and Control (CDC), 12. IEEE, 2020, pp. 5435–5442.
  • M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019), pp. 686–707.
  • F. Chinesta, E. Cueto, E. Abisset-Chavanne, J.L. Duval, and F.E. Khaldi, Virtual, digital and hybrid twins: A new paradigm in data-based engineering and engineered data, Arch. Comput. Methods Eng. 27 (2020), pp. 105–134.
  • S.L. Brunton, B.R. Noack, and P. Koumoutsakos, Machine learning for fluid mechanics, Annu. Rev. Fluid Mech. 52 (2020), pp. 477–508.
  • M. Adams, X. Li, L. Boucinha, S.S. Kher, P. Banerjee, and J.L. Gonzalez, Hybrid digital twins: A primer on combining physics-based and data analytics approaches, IEEE Softw. 39 (2022), pp. 47–52.
  • R. Geelen, S. Wright, and K. Willcox, Operator inference for non-intrusive model reduction with quadratic manifolds, Comput. Methods Appl. Mech. Eng. 403 (2023), p. 115717.
  • V.A. Sabel'nikov and L.F. Figueira da Silva, Partially stirred reactor: Study of the sensitivity of the monte-carlo simulation to the number of stochastic particles with the use of a semi-analytic, steady-state, solution to the pdf equation, Combust. Flame 129 (2002), pp. 164–178.
  • E. Mendoza Orbegoso and L.F. Figueira da Silva, Study of stochastic mixing models for combustion in turbulent flows, Proc. Combust. Inst. 32 (2009), pp. 1595–1603.
  • V.A. Sabel'nikov, B. Deshaies, and L.F. Figueira da Silva, Revisited flamelet model for nonpremixed combustion in supersonic turbulent flows, Combust. Flame 114 (1998), pp. 577–584.
  • M. Pfitzner and P. Breda, An analytic probability density function for partially premixed flames with detailed chemistry, Phys. Fluids 33 (2021), p. 035117.
  • D. Park, T. Lee, and K.T. Kim, Rotational symmetry-driven modal dynamics of high-frequency transverse instabilities in a lean-premixed multislit hydrogen combustor, Combust. Flame 245 (2022), p. 112356.
  • M. Zhao, D. Buttsworth, and R. Choudhury, Experimental and numerical study of OH* chemiluminescence in hydrogen diffusion flames, Combust. Flame 197 (2018), pp. 369–377.
  • D.G. Goodwin, H.K. Moffat, and R.L. Speth, Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Caltech, Pasadena, CA, 2009.
  • V.A. Alekseev, M. Christensen, and A.A. Konnov, The effect of temperature on the adiabatic burning velocities of diluted hydrogen flames: A kinetic study using an updated mechanism, Combust. Flame162 (2015), pp. 1884–1898.
  • A.L. Sánchez and F.A. Williams, Recent advances in understanding of flammability characteristics of hydrogen, Prog. Energy Combust. Sci. 41 (2014), pp. 1–55.
  • R.J. Blint, The relationship of the laminar flame width to flame speed, Combust. Sci. Technol. 49 (1986), pp. 79–92.
  • G. Joulin and T. Mitani, Linear stability analysis of two-reactant flames, Combust. Flame 40 (1981), pp. 235–246.
  • M.C. de Jesus Vieira and L.F. Figueira da Silva, Premixed flame heat release-based optimum global single-step chemistry for H 2, CH 4, and C 3H 8 mixtures with air, J. Braz. Soc. Mech. Sci. Eng. 44 (2022), p. 131.
  • I.G. McWilliam and H. Bolton, Instrumental peak distortion. I. Relaxation time effects, Anal. Chem.41 (1969), pp. 1755–1762.
  • E. Grushka, Characterization of exponentially modified Gaussian peaks in chromatography, Anal. Chem. 44 (1972), pp. 1733–1738.
  • G.S. Settles, Schlieren and Shadowgraph Techniques, Springer, Berlin Heidelberg, 2001.
  • D. Fernández-Galisteo, A.L. Sánchez, A. Liñán, and F.A. Williams, The hydrogen–air burning rate near the lean flammability limit, Combust. Theory Model. 13 (2009), pp. 741–761.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.