85
Views
0
CrossRef citations to date
0
Altmetric
Articles

Large eddy simulations of a buoyant turbulent line flame using conditional source-term estimation (CSE)

&
Pages 344-365 | Received 17 Mar 2023, Accepted 15 Nov 2023, Published online: 13 Dec 2023

References

  • Y. Chen, J. Fang, X. Zhang, Y. Miao, Y. Lin, R. Tu, and L. Hu, Pool fire dynamics: Principles, models and recent advances, Prog. Energy Combust. Sci. 95 (2023), pp. 101070.
  • A. Trouvé and Y. Wang, Large eddy simulation of compartment fires, Int. J. Comput. Fluid Dyn.24(10) (2010), pp. 449–466.
  • B. Merci and T. Beji, Fluid mechanics aspects of fire and smoke dynamics in enclosures, CRC Press Leiden, London, 2022.
  • A. Brown, M. Bruns, M. Gollner, J. Hewson, G. Maragkos, A. Marshall, R. McDermott, B. Merci, T. Rogaume, S. Stoliarov, J. Torero, A. Trouvé, Y. Wang, and E. Weckman, Proceedings of the first workshop organized by the IAFSS Working Group on Measurement and Computation of Fire Phenomena (MaCFP), Fire Saf. J. 101 (2018), pp. 1–17.
  • J. White, E. Link, A. Trouvé, P. Sunderland, A. Marshall, J. Sheffel, M. Corn, M. Colket, M. Chaos, and H.-Z. Yu, Radiative emissions measurements from a buoyant, turbulent line flame under oxidizer-dilution quenching conditions, Fire Saf. J. 76 (2015), pp. 74–84.
  • J.P. White, Measurement and simulation of suppression effects in a buoyant turbulent line fire, Ph.D. thesis, University of Maryland, College Park, 2016.
  • J. White, E. Link, A. Trouvé, P. Sunderland, and A. Marshall, A general calorimetry framework for measurement of combustion efficiency in a suppressed turbulent line fire, Fire Saf. J. 92 (2017), pp. 164–176.
  • S. Vilfayeau, J. White, P. Sunderland, A. Marshall, and A. Trouvé, Large eddy simulation of flame extinction in a turbulent line fire exposed to air-nitrogen co-flow, Fire Saf. J. 86 (2016), pp. 16–31.
  • J. White, S. Vilfayeau, A. Marshall, A. Trouve, and R. McDermott, Modeling flame extinction and reignition in large eddy simulations with fast chemistry, Fire Saf. J. 90 (2017), pp. 72–85.
  • G. Maragkos and B. Merci, Large eddy simulations of flame extinction in a turbulent line burner, Fire Saf. J. 105 (2019), pp. 216–226.
  • M. Modest, The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer, J. Heat Tran. 113 (1991), pp. 650–656.
  • V.M. Le, A. Marchand, S. Verma, R. Xu, J. White, A. Marshall, T. Rogaume, F. Richard, J. Luche, and A. Trouvé, Simulations of a turbulent line fire with a steady flamelet combustion model coupled with models for non-local and local gas radiation effects, Fire Saf. J. 106 (2019), pp. 105–113.
  • L. Ma, F. Nmira, and J.-L. Consalvi, Modelling extinction/re-ignition processes in fire plumes under oxygen-diluted conditions using flamelet tabulation approaches, Combust. Theor. Model. 26 (2022), pp. 613–636.
  • R. Xu, V.M. Le, A. Marchand, S. Verma, T. Rogaume, F. Richard, J. Luche, and A. Trouvé, Simulations of the coupling between combustion and radiation in a turbulent line fire using an unsteady flamelet model, Fire Saf. J. 120 (2021), p. 103101.
  • B. Kruljevic, I. Stankovic, and B. Merci, Large eddy simulations of the UMD line burner with the conditional moment closure method, Fire Saf. J. 116 (2020), pp. 103206.
  • W.K. Bushe and H. Steiner, Laminar flamelet decomposition for conditional source-term estimation, Phys. Fluids 15 (2003), pp. 1564–1575.
  • J.W. Labahn and C.B. Devaud, Investigation of conditional source-term estimation applied to a non-premixed turbulent flame, Combust. Theor. Model. 17(5) (2013), pp. 960–982.
  • J. Labahn and C. Devaud, Large eddy simulations (LES) including conditional source-term estimation (CSE) applied to two Delft-Jet-in-Hot-Coflow (DJHC) flames, Combust. Flame 164 (2016), pp. 68–84.
  • J.W. Labahn, I. Stanković, C.B. Devaud, and B. Merci, Comparative study between Conditional Moment Closure (CMC) and Conditional Source-term Estimation (CSE) applied to piloted jet flames, Combust. Flame 181 (2017), pp. 172–187.
  • M. Mortada and C. Devaud, Large eddy simulation of lifted turbulent flame in cold air using doubly conditional source-term estimation, Combust. Flame 208 (2019), pp. 420–435.
  • S.M. Ashrafizadeh and C. Devaud, Investigation of conditional source-term estimation coupled with a semi-empirical model for soot predictions in two turbulent flames, Combust. Theor. Model. 26(5) (2022), pp. 856–878.
  • A. Hussien and C.B. Devaud, Simulations of turbulent acetone spray flames using the conditional source term estimation (CSE) approach, Combust. Theor. Model. 25(2) (2021), pp. 269–292.
  • A. Hussien and C. Devaud, Simulations of partially premixed turbulent ethanol spray flames using doubly conditional source term estimation (DCSE), Combust. Flame 239 (2022), p. 111651.
  • A. Hussien and C. Devaud, LES study of turbulent ethanol spray flames using CSE coupled with non-adiabatic chemistry tables, Proc. Combust. Inst. 39 (2022), pp. 2379–2388.
  • T. Poinsot and D. Veynante, Theoretical and numerical combustion, RT Edwards, Inc., Philadelphia, 2005.
  • A.Y. Klimenko and R.W. Bilger, Conditional moment closure for turbulent combustion, Prog. Energy Combust. Sci. 25 (1999), pp. 595–687.
  • W. Bushe, Spatial gradients of conditional averages in turbulent flames, Combust. Flame 192 (2018), pp. 314–339.
  • R. Grout, W.K. Bushe, and C. Blair, Predicting the ignition delay of turbulent methane jets using conditional source-term estimation, Combust. Theor. Model. 11(6) (2007), pp. 1009–1028.
  • G. Nivarti, M. Salehi, and W. Bushe, A mesh partitioning algorithm for preserving spatial locality in arbitrary geometries, J. Comput. Phys. 281 (2015), pp. 352–364.
  • H. Tsui and W. Bushe, Conditional source-term estimation using dynamic ensemble selection and parallel iterative solution, Combust. Theor. Model. 20(5) (2016), pp. 812–833.
  • S. Girimaji, Assumed β-pdf model for turbulent mixing: Validation and extension to multiple scalar mixing, Combust. Sci. Technol. 78(4-6) (1991), pp. 177–196.
  • S. Pope and U. Maas, Simplifying chemical kinetics: Trajectory-generated low-dimensional manifolds, Mechanical and Aerospace Engineering Report, Ithaca, NY, Report No. FDA (1993) 93–11
  • J. Huang and W. Bushe, Simulation of transient turbulent methane jet ignition and combustion under engine-relevant conditions using conditional source-term estimation with detailed chemistry, Combust. Theor. Model. 11 (2007), pp. 977–1008.
  • P.C. Hansen, Numerical tools for analysis and solution of fredholm integral equations of the first kind, Inverse. Probl. 8(6) (1992), pp. 849.
  • R.A. Willoughby, Solutions of ill-posed problems (AN Tikhonov and VY Arsenin), SIAM Rev. 21(2) (1979), pp. 266.
  • G.P. Smith, Gri-mech 3.0, 1999. Available at http://www.me.berkley.edu/gri_mech/.
  • R.J. Renka, Algorithm 751: Tripack: A constrained two-dimensional delaunay triangulation package, ACM Trans. Math. Softw. 22(1) (1996), pp. 1–8.
  • G. Maragkos, T. Beji, and B. Merci, Advances in modelling in CFD simulations of turbulent gaseous pool fires, Combust. Flame 181 (2017), pp. 22–38.
  • M.M. Ahmed and A. Trouvé, Large eddy simulation of the unstable flame structure and gas-to-liquid thermal feedback in a medium-scale methanol pool fire, Combust. Flame 225 (2021), pp. 237–254.
  • W.L. Grosshandler, A narrow-band model for radiation calculations in a combustion, Environment NIST Tech (1993).
  • TNF Workshop, radiation models. Available at https://tnfworkshop.org/radiation/.
  • P.J. Coelho, Numerical simulation of the interaction between turbulence and radiation in reactive flows, Prog. Energy Combust. Sci. 33(4) (2007), pp. 311–383.
  • OpenFOAM-7, FireFOAM solver. Available at https://github.com/OpenFOAM/OpenFOAM-7/tree/master/applications/solvers/combustion/fireFoam.
  • J. Smagorinsky, General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev. 91(3) (1963), pp. 99–164.
  • C. Greenshields, OpenFOAM v8 User Guide: 5.2 Boundaries, July 2020. Available at https://cfd.direct/openfoam/user-guide/v8-boundaries/#x25-1770005.2.
  • A. Hamins and A. Lock, The structure of a moderate-scale methanol pool fire, TN-1928, NIST, 2016
  • L. Ma, F. Nmira, and J.-L. Consalvi, Large eddy simulation of medium-scale methanol pool fires-effects of pool boundary conditions, Combust. Flame 222 (2020), pp. 336–354.
  • B. Merci, J. Li, and G. Maragkos, On the importance of the heat release rate in numerical simulations of fires in mechanically ventilated air-tight enclosures, Proc. Combust. Inst. 39 (2023), pp. 3647–3672.
  • J. Consalvi and F. Nmira, Absorption turbulence-radiation interactions in sooting turbulent jet flames, J Quant. Spectrosc. Radiat. Transf. 201 (2017), pp. 1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.