69
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Deep convolutional neural network-based effective model for 2D ear recognition using data augmentation

&
Pages 403-420 | Received 01 Jun 2022, Accepted 20 Apr 2023, Published online: 04 May 2023

References

  • Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90.
  • Emeršič Ž, Štepec D, Štruc V, et al. The unconstrained ear recognition challenge. 2017 IEEE International Joint Conference on Biometrics (IJCB); 2017, October. IEEE. p. 715–724.
  • Mishra A. Multimodal biometrics it is: need for future systems. Int J Comput Appl. 2010;3(4):28–33.
  • Ammour B, Boubchir L, Bouden T, et al. Face–iris multimodal biometric identification system. Electronics (Basel). 2020;9(1):85.
  • Jain A, Hong L, Pankanti S. Biometric identification. Commun ACM. 2000;43:90–98.
  • Emersic Z, Struc V, Peer P. Ear recognition: more than a survey. Neuro Comput. 2017;255:26–39.
  • Pflug A, Busch C. Ear biometrics: a survey of detection, feature extraction and recognition methods. IET Biomet. 2012;1(2):114–129.
  • Abaza A, Ross A, Hebert C, et al. A survey on ear biometrics. ACM Comp Surv. 2013;45:22, [CrossRef].
  • Galdámez PL, Raveane W, Arrieta AG. A brief review of the ear recognition process using deep neural networks. J Appl Log. 2017;24:62–70.
  • Emeršič Ž, Meden B, Peer P, et al. Evaluation and analysis of ear recognition models: performance, complexity and resource requirements. Neural Comp Appl. 2020;32(20):15785–15800.
  • Hassaballah M, Alshazly HA, Ali AA. Robust local oriented patterns for ear recognition. Multimed Tools Appl. 2020;79(41):31183–31204.
  • Bustard JD, Nixon MS. Toward unconstrained ear recognition from two-dimensional images. IEEE Trans Syst Man Cybern Part A Syst Hum. 2010;40:486–494.
  • Alshazly H, Linse C, Barth E, et al. Deep convolutional neural networks for unconstrained ear recognition. IEEE Access. 2020;8:170295–170310.
  • Alshazly H, Linse C, Barth E, et al. Towards explainable ear recognition systems using deep residual networks. IEEE Access. 2021;9:122254–122273.
  • Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 24–27 June 2014; Columbus, OH, USA; p. 580–587.
  • Redmon J, Divvala S, Girshick R, et al. You only look once: unified: real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA; July 2016; p. 779–788.
  • Schroff F, Kalenichenko D, Philbin J. Facenet: a unified embedding for face recognition and clustering). Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 8–10 June 2015; Boston, MA, USA; p. 815–823.
  • Parkhi OM, Vedaldi A, Zisserman A. Deep face recognition. Proceedings of the British Machine Vision Conference; September 2015; Swansea, UK; p. 1–12. Sensors 2019, 19, 4139 24.
  • Wen Y, Zhang K, Li Z, et al. A discriminative feature learning approach for deep face recognition. Proceedings of the European Conference on Computer Vision; October 2016; Amsterdam, The Netherlands; p. 499–515.
  • Taigman Y, Yang M, Ranzato M, et al. Deepface: closing the gap to human-level performance in face verification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 24–27 June 2014; Columbus, OH, USA; p. 1701–1708.
  • Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks). Proceedings of the 25th International Conference on Neural Information Processing Systems; 3–6 December 2012; Lake Tahoe, NV, USA; p. 1097–1105.
  • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
  • Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision. proceedings of the IEEE conference on computer vision and pattern recognition: Las Vegas, NV. USA. July 2016; p. 2818–2826.
  • Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. Oct. 2010;22(10):1345–1359.
  • Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. J Big Data. 2016;3(1):9.
  • Alshazly H, Linse C, Barth E, et al. Ensembles of deep learning models and transfer learning for ear recognition. Sensors. 2019;19(19):4139.
  • Abate AF, Nappi M, Riccio D, et al. Ear recognition by means of a rotation invariant descriptor. 18th International Conference on Pattern Recognition (ICPR'06); 2006 Aug. IEEE. (Vol. 4), p. 437–440.
  • Kumar A, Wu C. Automated human identification using ear imaging. Pattern Recognit. 2012;45(3):956–968.
  • Hurley, DJ., Nixon, MS., Carter, JN Automatic ear recognition by force field transformations. In IEE colloquium on visual biometrics (Ref. No. 2000/018). IET; 2000 Mar. p. 7–1.
  • Yuan L, Mu ZC, Zhang Y, et al. Ear recognition using improved non-negative matrix factorization. 18th International Conference on Pattern Recognition (ICPR'06); 2006 Aug. Vol. 4. IEEE, p. 501–504.
  • Zhang HJ, Mu ZC, Qu W, et al. A novel approach for ear recognition based on ICA and RBF network. International Conference on Machine Learning and Cybernetics; Aug 2005. IEEE, Vol. 7. p. 4511–4515.
  • Hurley DJ, Nixon MS, Carter JN. Force field feature extraction for ear biometrics. Comput Vis Image Underst. 2005;98(3):491–512.
  • Zhang H-J, Mu Z-C, Qu W, et al. A novel approach for ear recognition based on ICA and RBF network. IEEE International Conference on Machine Learning and Cybernetic(s7); p. 4511–4515.
  • Yuan L, Mu ZC. Ear recognition based on 2D images. 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems; 2007 Sep. IEEE. p. 1–5.
  • Alaraj M, Hou J, Fukami T. A neural network based human identification framework using ear images. International Technical Conference of IEEE Region; 2010;10: p. 1595–1600.
  • Zhang Z, Liu H. Multi-View ear recognition based on b-spline pose manifold construction. 2008 7th World Congress on Intelligent Control and Automation; 2008 June. IEEE. p. 2416–2421.
  • Benzaoui A, Hadid A, Boukrouche A. Ear biometric recognition using local texture descriptors. J Electron Imaging. 2014;23(5):053008.
  • Guo Y, Xu Z. Ear recognition using a new local matching approach. 2008 15th IEEE International Conference on Image Processing; 2008 Oct. IEEE. p. 289–292.
  • Ojansivu V, Rahtu E, Heikkila J. Rotation invariant local phase quantization for blur insensitive texture analysis. 2008, 19th International Conference on Pattern Recognition; 2008 Dec. IEEE. p. 1–4.
  • Vu NS, Caplier A. Face recognition with patterns of oriented edge magnitudes). European Conference on Computer Vision; 2010, September. Springer, Berlin, Heidelberg. p. 313–326.
  • Anwar AS, Ghany KKA, ElMahdy H. Human ear recognition using SIFT features). 2015 Third World Conference on Complex Systems (WCCS); 2015 Nov. IEEE. p. 1–6.
  • Bustard JD, Nixon MS. Robust 2D ear registration and recognition based on SIFT point matching. 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems; 2008 September. IEEE. p. 1–6.
  • Damer N, Führer B. Ear recognition using multi-scale histogram of oriented gradients. 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing; 2012 July. IEEE. p. 21–24.
  • Prakash S, Gupta P. An efficient ear localization technique. Image Vis Comput. 2012;30(1):38–50.
  • Hassaballah M, Alshazly HA, Ali AA. Ear recognition using local binary patterns: A comparative experimental study. Expert Syst Appl. 2019;118:182–200.
  • Prakash S, Jayaraman U, Gupta P. A skin-color and template based technique for automatic ear detection). 2009 Seventh International Conference on Advances in Pattern Recognition; 2009 Feb. IEEE. p. 213–216.
  • Emeršič Ž, Križaj J, Štruc V, et al. Deep ear recognition pipeline). Recent Advances in Computer Vision; 2019. Springer, Cham. p. 333–362.
  • Islam SM, Bennamoun M, Davies R. Fast and fully automatic ear detection using cascaded adaboost). 2008 IEEE Workshop on Applications of Computer Vision; 2008 Jan. IEEE. p. 1–6.
  • Deng J, Dong W, Socher R, et al. Imagenet: A large-scale hierarchical image database). 2009 IEEE Conference on Computer Vision and Pattern Recognition; 2009 June. IEEE. p. 248–255.
  • Eyiokur FI, Yaman D, Ekenel HK. Domain adaptation for ear recognition using deep convolutional neural networks. iet Biomet. 2018;7(3):199–206.
  • Cintas, C.,: Quinto-Sánchez, M., Acuña, V., Paschetta, C., De Azevedo, S., Cesar Silva de Cerqueira, C., Ramallo, V., Gallo, C., Poletti, G., Bortolini, M.C. and Canizales-Quinteros, S., 2017. Automatic ear detection and feature extraction using geometric morphometric and convolutional neural networks. IET Biomet, 6(3), p. 211-223.
  • Tomczyk A, Szczepaniak PS. Ear detection using convolutional neural network on graphs with filter rotation. Sensors. 2019;19(24):5510.
  • Zhou Y, Zaferiou S. Deformable models of ears in-the-wild for alignment and recognition). 2017, 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017); 2017 May. IEEE. p. 626–633.
  • Alejo MB. Unconstrained Ear recognition using transformers. Jordanian J Comp Inform Techn. 2021;7(4).
  • Zulfiqar M, Syed F, Khan MJ, et al. Deep face recognition for biometric authentication. 2019, international Conference on Electrical, Communication, and Computer Engineering (ICECCE); 2019. p. 1–6. IEEE.
  • Alshazly H, Linse C, Barth E, et al. Handcrafted versus CNN features for ear recognition. Symmetry (Basel). 2019;11(12):1493.
  • Kamboj A, Rani R, Nigam A. A comprehensive survey and deep learning-based approach for human recognition using ear biometric. The Visual Computer. 2022;38(7):2383–2416.
  • He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell. 2015;37(9):1904–1916.
  • Ramos-Cooper S, Gomez-Nieto E, Camara-Chavez G. VGGFace-Ear: An extended dataset for unconstrained Ear recognition. Sensors. 2022;22(5):1752.
  • Tan C, Guan Y, Feng Z, et al. Deepbrainseg: automated brain region segmentation for micro-optical images with a convolutional neural network. Front Neurosci. 2020;14:179.
  • Emeršič Ž, Gabriel LL, Štruc V, Peer P Pixel-wise ear detection with convolutional encoder-decoder networks. arXiv preprint arXiv:1702.00307. 2017.
  • Dieleman S, Willett KW, Dambre J. Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon Not R Astron Soc. 2015;450(2):1441–1459.
  • Laptev D, Savinov N, Buhmann JM, et al. Ti-pooling: transformation-invariant pooling for feature learning in convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016. p. 289–297.
  • Emeršič Ž, Gabriel LL, Štruc V, et al. Pixel-wise ear detection with convolutional encoder-decoder networks. arXiv preprint arXiv:1702.00307. 2017.
  • Alejo M, Hate CP. Unconstrained ear recognition through domain adaptive deep learning models of convolutional neural network. International Journal of Recent Technology and Engineering. 2019;8(2).
  • Ahila Priyadharshini R, Arivazhagan S, Arun M. A deep learning approach for person identification using ear biometrics. Appl Intellig. 2021;51(4):2161–2172.
  • Gonzalez E, Alvarez L, Mazorra L. AMI: Ear Database. Available from: https://ctim.ulpgc.es/research_works/ami_ear_database/.
  • Emeršič Ž, Meden B, Štruc V, et al. AWE: Ear Database Available from: http://awe.fri.uni-lj.si/datasets.html.
  • Kumar A, Wu C. IITD-II: Ear Database Available from: http://www4.comp.polyu.edu.hk/~csajaykr/myhome/database_request/ear/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.