Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 30, 2024 - Issue 1
294
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Heat and mass transport of an advection-diffusion viscous fluid past a magnetized multi-physical curved stretching sheet with chemical reaction

, &
Pages 131-155 | Received 05 Nov 2023, Accepted 23 Jan 2024, Published online: 03 Mar 2024

References

  • P.A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge University Press, New York, (2001).
  • H.P. Greenspan and G.F. Carrier, The magnetohydrodynamic flow past a flat plate, J. Fluid. Mech. 6 (1) (1959), pp. 77–96. doi:10.1017/S0022112059000507.
  • M. Ashraf, S. Asghar, and M.A. Hossain, Thermal radiation effects on hydromagnetic mixed convection flow along a magnetized vertical porous plate, Math. Probl. Eng. 30 (2010), pp. 1–30. doi:10.1155/2010/686594.
  • T.V. Davies, Proceedings of the royal society of London, Series A. Math. and Phys. Sci. 273 (1967), pp. 1355.
  • I. Airal, E.A. Algehyne, A. Ahmad, and F. Mallawi, Magneto-hydrodynamic flow of Reiner Philippoff Fluid, Stability Analysis. 96 (3) (2020), pp. 035203. doi:10.1088/1402-4896/abd360.
  • Y. Jiang, H. Sun, Y. Bai, and Y. Zhang, MHD flow, radiation heat and mass transfer of fractional Burger’s fluid in porous medium with chemical reaction, Comp. & Math Appl. 115 (1) (2022), pp. 68–79. doi:10.1016/j.camwa.2022.01.014.
  • K.B. Pavlov, Magnetohydrodynamic flow of an incompressible viscous fluid caused by deformation of a plane surface, Magnitnaya Gidrodinamika. 4 (1074), pp. 146–147.
  • M.K. Veera and A.J. Chamkha, Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium, Int. Comm. Heat and Mass Transfer. 113 (2020), pp. 104494. doi:10.1016/j.icheatmasstransfer.2020.104494.
  • S.I. Amos, T.A. Mojeed, U.A. Jos, and O.F. Bidemi, MHD free convective heat and mass transfer flow dissipative Casson fluid with variable viscosity and thermal conductivity effects, J. Talibah Uni. Sci. 14 (1) (2022), pp. 851–862. doi:10.1080/16583655.2020.1781431.
  • K. Swain, S.K. Parida, and G.C. Dash, MHD heat and Mass transfer on stretching sheet with variable fluid properties in porous medium, AMSE J-AMSE IIETA Pub.-2017-Series: Modelling B. 86 (3) (2017), pp. 706–726. doi:10.18280/mmc_b.860307.
  • R. Dodda, R. Srinivasa, J.R. Anand, and A.J. Chamkha, Effects of velocity and thermal wall slip on magnetohydrodynamics (MHD) boundary layer viscous flow and heat transfer of a nano fluid over a non-linearly-stretching sheets: A numerical study, Prop. Pow. Res. 7 (2) (2018), pp. 182–195. doi:10.1016/j.jppr.2018.04.003.
  • F. Mabood, S. Shateyi, M.M. Rashidi, E. Momoniat, and N. Freidoonimehr, MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction, Adv. Powder Tech. 27 (2) (2016), pp. 742–749. doi:10.1016/j.apt.2016.02.033.
  • R. Mohamed, M.L. Eid Kasseb, T. Mohammed, and M. Sheikholeslami, Numerical treatment for Carreau nanofluid flow over a porous nonlinear stretching surface, Results Phys. 8 (2018), pp. 1185–1193. doi:10.1016/j.rinp.2018.01.070.
  • G.R. Machireddy and S. Naramgari, Heat and mass transfer in radiative MHD Carreau fluid with cross diffusion, Ain Shams Eng. J. 9 (4) (2018), pp. 1189–1204. doi:10.1016/j.asej.2016.06.012.
  • P.V. SatyaNarayana and D. HarishBabu, Numerical study of MHD heat and mass transfer of a Jeffrey fluid over a stretching sheet with chemical reaction and thermal radiation, J. Taiwan Inst. Chem. Eng. 59 (2015), pp. 18–25. doi:10.1016/j.jtice.2015.07.014.
  • Y. Dharmendar Reddy, B. Shankar Goud, K. Sooppy Nisar, B. Alshahrani, M. Mahmoud, and C. Park, Heat absorption/generation effect on MHD heat transfer fluid flow along a stretching cylinder with a porous medium, Alex Eng. J. 64 (2023), pp. 659–666. doi:10.1016/j.aej.2022.08.049.
  • K. Zeeshan, R.A. Shah, S. Islam, J. Hamid, J. Bilal, R. Haroon, and K. Aurangzeeb, MHD flow and Heat Transfer Analysis in theWire coating process using elastic-viscous, Coatings. 7 (1) (2017), pp. 15. doi:10.3390/coatings7010015.
  • U.S. Mahabaheshwar, K.R. Nagaraju, P.N. Vinagkumar, M.N. Nadagoud, R. Bennacer, and D. Baleanu, An mhd viscous liquid stagnation point flow and heat transfer with thermal radiation and transpiration, Thermal Sci. Eng. Prog. 16 (2019), pp. 100379. doi:10.1016/j.tsep.2019.100379.
  • G. Nagaraju and M. Garvandha, Magnetohydrodynamic viscous fluid flow and heat transfer in a circular pipe under an externally applied constant suction, Heliyon. 5 (2019) (2019), pp. e01281. doi:10.1016/j.heliyon.2019.e01281.
  • S.K. Soid, A. Ishak, and I. Pop, Unsteady MHD flow and heat transfer over a shrinking sheet with ohmic, Chinese J. Phy. 55 (4) (2017), pp. 1626–1636. doi:10.1016/j.cjph.2017.05.001.
  • M. Madhu, K. Naikoti, and A.J. Chamkha, Unsteady flow of a maxwell nanofluid over a stretching surface in the presence of magnetohydrodynamic and thermal radiation effects, Propul. Power Res. 6 (1) (2017), pp. 31–40. doi:10.1016/j.jppr.2017.01.002.
  • M.V. Krishna, N.A. Ahammad, and A.J. Chamkha, Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface, Case Studies Thermal Eng. 27 (2021), pp. 101229. doi:10.1016/j.csite.2021.101229.
  • B. Kumar, G.S. Seth, R. Nandkeolyar, and A.J. Chamkha, Outlining the impact of induced magnetic field and thermal radiation on magneto-convection flow of dissipative fluid, Int. J. Thermal Sci. 146 (2019), pp. 106101. doi:10.1016/j.ijthermalsci.2019.106101.
  • A.J. Chamkha, Coupled heat and mass transfer by natural convection about a truncated cone in the presence of magnetic field and radiation effects, nume heat transfer: Part A, Numer. Heat Transf., Part A: Appl. 39 (5) (2001), pp. 511–530. doi:10.1080/10407780120202.
  • M.A. Abdelhafez, A.A. Awad, M.A. Nafe, and D.A. Eisa, Time-dependent viscous flow of higher-order reactive MHD Maxwell nanofluid with Joule heating in a porous regime, Waves Random Complex Media. (2021), pp. 1–21. doi:10.1080/17455030.2021.1927237.
  • L. Ali, B. Ali, D. Habib, and Q. Al Mdallal, Finite element analysis on the thermo-convective non-isothermal nanofluid flow in MHD Hall generator system with Soret and Dufour effects, Case Studies Thermal Eng. 39 (2022), pp. 102389. doi:10.1016/j.csite.2022.102389.
  • K.G. Kumar, N.G. Rudraswamy, B.J. Gireesha, and S. Manjunatha, Nonlinear thermal radiation effect on Williamson fluid with particle-liquid suspension past a stretching surface, Result Phy. 7 (2017), pp. 3196–3207. doi:10.1016/j.rinp.2017.08.027.
  • Z. Abbas, M. Naveed, M. Hussain, and N. Salamat, Analysis of entropy generation for MHD flow of viscous fluid embedded in a vertical porous channel with thermal radiation, Alex Eng. J. 59 (5) (2020), pp. 3395–3405. doi:10.1016/j.aej.2020.05.019.
  • K.M. Sanni, Q. Hussain, and S. Asghar, Thermal analysis of a hydromagnetic viscoelastic fluid flow over a continuous curved stretching surface in the presence of radiative heat flux, Arab. J. Sci. Eng. 46 (1) (2020), pp. 631–644. doi:10.1007/s13369-020-04671-8.
  • K.M. Sanni, Q. Hussain, and S. Asghar, Heat transfer analysis for non-linear boundary driven flow over a curved stretching sheet with a variable magnetic field, Front Phys. 8 (2020), pp. 113. doi:10.3389/fphy.2020.00113.
  • T. Hayat, M. Rashid, M. Imtiaz, and A. Alsaedi, MHD convective flow due to a curved surface with thermal radiation and chemical reaction, J. Mol. Liq. 6643 (2016), pp. 482–489. doi:10.1016/j.molliq.2016.11.096.
  • K.M. Sanni, S. Asghar, and R. Saima, Yu Chi Wu, 2021, nonlinear radiative treatment of hydromagnetic non-Newtonian fluid flow induced by nonlinear convective boundary driven curved sheet with dissipations and chemical reaction effects, Front Phys. 9 (2021), pp. 670930. doi:10.3389/fphy.2021.670930.
  • M.A. Imran, M. Aleem, M.B. Riaz, R. Ali, and I. Khan, A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions, Chaos Solitons Fractals. 118 (2019), pp. 274–289. doi:10.1016/j.chaos.2018.12.001.
  • N. Syahirah Wahid, N. Md Arifin, N.S. Khashi, and I. Pop, Mixed convection MHD hybrid nanofluid over a shrinking permeable inclined plate with thermal radiation effect, Alex Eng. J. 66 (2023), pp. 769–783. doi:10.1016/j.aej.2022.10.075.
  • T. Hayat, R.S. Saif, R. Ellahi, T. Mohammed, and B. Ahmad, Numerical study of boundary layer flow due to a nonlinear curved stretching sheet with convective heat and mass conditions, Results Phy. 7 (2017), pp. 2601–2606. doi:10.1016/j.rinp.2017.07.023.
  • K.M. Sanni, S. Asghar, M. Jalil, and N.F. Okechi, Flow of viscous fluid along a nonlinearly stretching curved surface, Results Phys. 7 (2017), pp. 1–7. doi:10.1016/j.rinp.2016.11.058.
  • N.C. Rosca and I. Pop, Unsteady boundary n layer flow over a permeable curved stretching/shrinking surface, Eur. J. Mech. B/Fluid 51 (2015), pp. 61–67. doi:10.1016/j.euromechflu.2015.01.001.
  • K.M. Sanni, Q. Hussain, and S. Asghar, Flow of magnetohydrodynamic viscous fluid by curved configuration with Non-linear Boundary Driven Velocity, J. Taibah Univ. Sci. 15 (1) (2021), pp. 589–598. doi:10.1080/16583655.2021.1991076.
  • N. Yasir and M.S. Arif, Keller-Box shooting method and its application to nanofluid flow over convectively heated sheet with stability and convergence, Num Heat Transf., Part B: Fundam. 76 (3) (2019), pp. 152–180. doi:10.1080/10407790.2019.1644924.
  • K.M. Sanni, A.D. Adeshola, and T.O. Aliu, Numerical investigation of nonlinear radiative flux of non-Newtonian MHD fluid induced by nonlinear driven multi-physical curved mechanism with variable magnetic field, J Nig. Soc. Phys. Sci. (2023), pp. 1435–1435. doi:10.46481/jnsps.2023.1435.
  • Z. Abbas, M. Naveed, and M. Sajid, Heat transfer analysis for stretching flow over a curved surface with magnetic field, J. Eng. Thermophys. 22 (4) (2013), pp. 337–345. doi:10.1134/S1810232813040061.
  • K.M. Sanni, S. Asghar, I. Al-Shbeil, and A. Catas, Radiative simulation of non-Newtonian MHD fluid over a boundary-driven multi-physical curved mechanism: Keller–box evidence, Frontiers Phy. 11 (2023), pp. 248. doi:10.3389/fphy.2023.1126003.