Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 30, 2024 - Issue 1
447
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Driving torque model of the bionic soft arm’s hyperelastic bellows

, &
Pages 91-114 | Received 04 Jul 2023, Accepted 01 Feb 2024, Published online: 18 Feb 2024

References

  • A. Pal, V. Restrepo, D. Goswami, and R.V. Martinez, Exploiting mechanical instabilities in soft robotics: Control, sensing, and actuation, Adv. Mater. 33 (19) (2021), pp. e2006939. doi:10.1002/adma.202006939.
  • M. Cianchetti, C. Laschi, A. Menciassi, and P. Dario, Biomedical applications of soft robotics, Nat. Rev. Mater. 3 (6) (2018), pp. 143–153. doi:10.1038/s41578-018-0022-y.
  • F. Schmitt, O. Piccin, L. Barbé, and B. Bayle, Soft robots manufacturing: A review, Front. Robot. AI. 5 (2018), pp. 84. doi:10.3389/frobt.2018.00084.
  • A.D. Marchese, C.D. Onal, and D. Rus, Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators, Soft Robotics 1 (1) (2014), pp. 75–87. doi:10.1089/soro.2013.0009.
  • Y. Ling Yap, S. Leong Sing, and W. Yee Yeong, A review of 3d printing processes and materials for soft robotics, Rapid. Prototyp. J. 26 (8) (2020), pp. 1345–1361. doi:10.1108/RPJ-11-2019-0302.
  • M. Mooney, A theory of large elastic deformation, J. Appl. Phys. 11 (9) (1940), pp. 582–592. doi:10.1063/1.1712836.
  • R. William Ogden, Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids, Proceedings Of The Royal Society Of London. Series A: Mathematical, Physical And Engineering Sciences 326 (1972), pp. 565–584.
  • C. Della Santina, C. Duriez, and D. Rus, Model-based control of soft robots: A survey of the state of the art and open challenges, IEEE Control Syst. 43 (3) (2023), pp. 30–65. doi:10.1109/MCS.2023.3253419.
  • M.N. Hamza and M. Alwan Hassan, Hyperelastic constitutive modeling of rubber and rubber-like materials under finite strain, ETJ 28 (13) (2010), pp. 2560–2575. doi:10.30684/etj.28.13.5.
  • B. Kim, S. Beom Lee, J. Lee, S. Cho, H. Park, S. Yeom, and S. Han Park, A comparison among neo-hookean model, mooney-rivlin model, and ogden model for chloroprene rubber, Int. J. Precis. Eng. Manuf. 13 (5) (2012), pp. 759–764. doi:10.1007/s12541-012-0099-y.
  • M. Julio García Ruíz and L. Yarime Suárez González, Manuel Julio García Ruíz and Leidy Yarime Suárez González. Comparison of hyperelastic material models in the analysis of fabrics, International Journal Of Clothing Science And Technology 18 (5) (2006), pp. 314–325. doi:10.1108/09556220610685249.
  • W.W. Feng and W.-H. Yang, On the contact problem of an inflated spherical nonlinear membrane, J. Appl. Mech. 40 (1) (1973), pp. 209–214. doi:10.1115/1.3422928.
  • T. Liu, M. Chiaramonte, A. Amini, Y. Menguc, and G.M. Homsy, Indentation and bifurcation of inflated membranes, Proc. R. Soc. A 477 (2247) (2021), pp. 20200930. doi:10.1098/rspa.2020.0930.
  • A. Srivastava and C.-Y. Hui, Large deformation contact mechanics of long rectangular membranes. i. adhesionless contact, Proc. R. Soc. A 469 (2160) (2013), pp. 20130424. doi:10.1098/rspa.2013.0424.
  • D. Müller and O. Sawodny, Modeling the soft bellows of the bionic soft arm, IFAC-Papersonline 55 (20) (2022), pp. 229–234. doi:10.1016/j.ifacol.2022.09.100.
  • D. Müller, A. Raisch, A. Hildebrandt, and O. Sawodny. Nonlinear model based dynamic control of pneumatic driven quasi continuum manipulators. In 2020 IEEE/SICE International Symposium on System Integration (SII), Honolulu, HI, USA. IEEE, 2020.
  • A. Sedal, R.B.G. Alan Wineman, and C. David Remy, Comparison and experimental validation of predictive models for soft, fiber-reinforced actuators, Int J Rob Res 40 (1) (2021), pp. 119–135. doi:10.1177/0278364919879493.
  • A.H. Gerhard, Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science, John Wiley & Sons, Chichester, 2000.
  • H.B. Khaniki, M.H. Ghayesh, R. Chin, and M. Amabili, A review on the nonlinear dynamics of hyperelastic structures, Nonlinear Dyn 110 (2) (2022), pp. 963–994. doi:10.1007/s11071-022-07700-3.
  • J. Bonet and D.W. Richard, Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd ed. ed., University Press, New York, 2008.
  • O.H. Yeoh, Some forms of the strain energy function for rubber, Rubber Chemistry And Technology 66 (5) (1993), pp. 754–771. doi:10.5254/1.3538343.
  • R.W. Ogden and D.G. Roxburgh, A pseudo–elastic model for the mullins effect in filled rubber, Proc R Soc Lond A 455 (1988) (1999), pp. 2861–2877. doi:10.1098/rspa.1999.0431.
  • W. Walter Klingbell and R. Thorpe Shield, Some numerical investigations on empirical strain energy functions in the large axi-symmetric extensions of rubber membranes, Zeitschrift für angewandte Mathematik und Physik ZAMP 15 (6) (1964), pp. 608–629. doi:10.1007/BF01595147.
  • N. Kumar and A. DasGupta, On the contact problem of an inflated spherical hyperelastic membrane, Int J Non Linear Mech 57 (2013), pp. 130–139. doi:10.1016/j.ijnonlinmec.2013.06.015.