Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 30, 2024 - Issue 1
394
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel class of integral inequalities with graphical approach and diverse applications

, , , &
Pages 156-178 | Received 11 Jan 2024, Accepted 28 Feb 2024, Published online: 22 Mar 2024

References

  • Adil Khan M, Iqbal A, Suleman M, Chu YM. 2018. Hermite–hadamard type inequalities for fractional integrals via Green’s function. J Inequal Appl. 20182018(1):1–15. doi: 10.1186/s13660-018-1751-6.
  • Aldaz JM. 2008. A stability version of Hölder’s inequality. J Math Anal Appl. 343(2):842–852. doi: 10.1016/j.jmaa.2008.01.104.
  • Bai SP, Wang SH, Qi F. 2012. Some hermite-hadamard type inequalities for n-time differentiable (αm)-convex functions. J Inequal Appl. 2012(1):1–11. doi: 10.1186/1029-242X-2012-267.
  • Barsam H, Ramezani SM, Sayyari Y. 2021. On the new Hermite–Hadamard type inequalities for s-convex functions. Afrika Mat. 32(7–8):1355–1367. doi: 10.1007/s13370-021-00904-7.
  • Butt SI, Javed I, Agarwal P, Nieto JJ. 2023. Newton–Simpson-type inequalities via majorization. J Inequal Appl. 2023(1):16. doi: 10.1186/s13660-023-02918-0.
  • Butt SI, Saima R, Iram J, Khuram AK, Rostin MM. 2022. New fractional estimates of Simpson-Mercer type for twice differentiable mappings pertaining to Mittag-Leffler kernel. J Math. 2022:1–14. doi: 10.1155/2022/4842344.
  • Chu YM, Wang GD, Zhang XH. 2010. Schur convexity and Hadamard’s inequality. Math Inequal Appl. 13(4):725–731. doi: 10.7153/mia-13-51.
  • Deng J, Wang J. 2013. Fractional hermite-hadamard inequalities for (αm)-logarithmically convex functions. J Inequal Appl. 2013(1):1–11. doi: 10.1186/1029-242X-2013-364.
  • Dragomir SS. 2011. Operator inequalities of Ostrowski and trapezoidal type. New York: Springer.
  • Dwivedi PP, Sharma DK. 2022. Generalized useful converse Jensen’s inequality with data illustration. WSEAS Transactions On Systems. 21:62–67. doi: 10.37394/23202.2022.21.7.
  • Fahad A, Wang Y, Butt SI. 2023. Jensen–Mercer and hermite–hadamard–Mercer type inequalities for GA-h-convex functions and its subclasses with applications. Math. 11(2):278. doi: 10.3390/math11020278.
  • Feckan J, Deng M, Wang J. 2013. Hermite–Hadamard-type inequalities for r-convex functions based on the use of riemann–liouville fractional integrals. Ukr Math J. 65(2):193–211. doi: 10.1007/s11253-013-0773-y.
  • Gardner R. 2002. The Brunn-Minkowski inequality. Bull Amer Math Soc. 39(3):355–405. doi: 10.1090/S0273-0979-02-00941-2.
  • Hadamard J. 1893. Etude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J Math Pures Appl. 9:171–215.
  • Hermite C. 1883. Sur deux limites d’une intégrale définie. Mathesis. 3(1):1–82.
  • Hudzik H, Maligranda L. 1994. Some remarks on s-convex functions. Aeq Math. 48(1):100–111. doi: 10.1007/BF01837981.
  • Kadakal M, Iscan I, Agarwal P, Jleli M. 2021. Exponential trigonometric convex functions and hermite-hadamard type inequalities. Math Slovaca. 71(1):43–56. doi: 10.1515/ms-2017-0410.
  • Kalsoom H, Latif MA, Khan ZA, Vivas-Cortez M. 2022. Some new Hermite-Hadamard-Fejér fractional type inequalities for h-convex and harmonically h-convex interval-valued functions. Math. 10(1):74. doi: 10.3390/math10010074.
  • Kashuri A, Almalki Y, Mahnashi AM, Sahoo SK. 2023. New estimates on Hermite-Hadamard type inequalities via generalized tempered fractional integrals for convex functions with applications. Fractal Fract. 7(8):579. doi: 10.3390/fractalfract7080579.
  • Khan M, Chu Y, Khan T, Khan J. 2017. Some new inequalities of hermite-hadamard type for s-convex functions with applications. Open Math. 15(1):1414–1430. doi: 10.1515/math-2017-0121.
  • Khan MA, Khan S, Erden S, Samraiz M. 2022. A new approach for the derivation of bounds for the Jensen difference. Math Meth Appl Sci. 45(1):38–48. doi: 10.1002/mma.7757.
  • Luisa BG. 1990. Convex functions. handbook of convex geometry. North Holland: Elsvier.
  • Magin R. 2004. Fractional calculus in bioengineering, part 1. Crit Rev Biomed Eng. 32(1):1–104. doi: 10.1615/CritRevBiomedEng.v32.i1.10.
  • Magin RL Fractional calculus in bioengineering: a tool to model complex dynamics. Proceedings of the 13th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, High Tatras, 2012, 464–469.
  • Maligranda L. 2018. A simple proof of the Hölder’s and the Minkowski’s inequality. Am Math Mon. 102(3):256–259. doi: 10.1080/00029890.1995.11990566.
  • McShane EJ. 1937. Jensen’s inequality. Bull Amer Math Soc. 43(8):521–527. doi: 10.1090/S0002-9904-1937-06588-8.
  • Mitrinovic DS, Pecaric JE, Fink AM. 1993. Classical and new inequalities in analysis. Berlin, Germany: Springer Science and Business Media.
  • Nguyen NT, Tran VN. 2021. On the solution existence to convex polynomial programs and its applications. Optim Lett. 15(2):719–731. doi: 10.1007/s11590-020-01686-w.
  • Niculescu CP, Persson LE, Niculescu CP. 2006. Functions on a normed linear space. In: Convex functions and their applications. CMS books in mathematics. New York: Springer.
  • Oldham KB. 2010. Fractional differential equations in electrochemistry. Adv Eng Softw. 41(1):9–12. doi: 10.1016/j.advengsoft.2008.12.012.
  • Özdemir ME, Ardic MA, Kavurmaci H. 2016. Hermite-hadamard-fejér type inequalities for quasi-geometrically convex functions via fractional integrals. Turkish J Sci. 2016(1):1–7. doi: 10.1155/2016/6523041.
  • Özdemir ME, Avci M, Set E. 2010. On some inequalities of hermite-hadamard type via m-convexity. Appl Math Lett. 23(9):1065–1070. doi: 10.1016/j.aml.2010.04.037.
  • Özdemir ME, Set E, Sarıkaya MZ. 2011. Some new hadamard type inequalities for co-ordinated m-convex and (αm)-convex functions. Hacettepe J Math Stat. 40(2):219–229.
  • Özdemir ME, Yildiz C, Akdemir AO, Set E. 2013. On some inequalities for s-convex functions and applications. J Inequal Appl. 333(2013):1–11. doi: 10.1186/1029-242X-2013-333.
  • Raissouli M, Dragomir SS. 2015. Refining recursively the Hermite-Hadamard inequality on a simplex. Bull Aust Math Soc. 92(1):57–67. doi: 10.1017/S0004972715000258.
  • Sun H, Zhang Y, Baleanu D, Chen W, Chen Y. 2018. A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simulation. 64:213–231. doi: 10.1016/j.cnsns.2018.04.019.
  • Varošanec S. 2007. On h-convexity. J Math Anal Appl. 326(1):303–311. doi: 10.1016/j.jmaa.2006.02.086.
  • Wang J-Y, Yin H-P, Sun W-L, Guo B-N. 2012. Hermite-hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Appl Anal. 92(11):2241–2253. doi: 10.1080/00036811.2012.727986.
  • Wang J-Y, Yin H-P, Sun W-L, Guo B-N. 2022. Hermite-Hadamard integral inequalities of (αs)-GA and (αsm)-GA-convex functions. Axioms. 11(11):616. doi: 10.3390/axioms11110616.
  • Wu Y, Yin HP, Guo BN. 2021. Generalizations of hermite-hadamard type integral inequalities for convex functions. Axioms. 10(3):136. doi: 10.3390/axioms10030136.
  • Zhang XM, Chu YM, Zhang XH. 2010. The Hermite-Hadamard type inequality of GA-convex functions and its application. J Inequal Appl. 2010:1–11. doi: 10.1155/2010/507560.