Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 30, 2024 - Issue 1
205
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A spatial epidemic model with contact and mobility restrictions

, &
Pages 284-302 | Received 16 Nov 2023, Accepted 27 Mar 2024, Published online: 22 Apr 2024

References

  • Aguilar J, Bassolas A, Ghoshal G, Hazarie S, Kirckley A, Mazzoli M, Meloni S, Mimar S, Nicosia V, JJ R, et al. 2022. Impact of urban structure on infectious disease spreading. Sci Rep. 12(1):3816. doi: 10.1038/s41598-022-06720-8.
  • Arino J, Van Den Driessche P. 2023. A multi-city epidemic model. Math Popul Studies. 10(3):175–193. doi: 10.1080/08898480306720.
  • Aseev SM, Veliov VM. 2019. Another view of the maximum principle for infinite-horizon optimal control problems in economics. Russ Math Surv. 74(6):963–1011. doi: 10.1070/RM9915.
  • Bertaglia G, Boscheri W, Dimarco G, Pareschi L. 2021. Spatial spread of COVID-19 outbreak in Italy using multiscale kinetic transport equations with uncertainty. Math Biosci Eng. 18(5):7028–7059. doi: 10.3934/mbe.2021350.
  • Bloom DE, Kuhn M, Prettner K. 2020. Modern infectious diseases: macroeconomic impacts and policy responses. J Of Economic Literature. 60(1):85–131. doi: 10.1257/jel.20201642.
  • Brauer F, Castillo-Chavez C, Feng Z. 2019. Mathematical models in epidemiology. Vol. 32, Berlin: Springer.
  • Castillo-Chavez C, Bichara D, Morin BR. 2016. Perspectives on the role of mobility, behavior, and time scales in the spread of diseases. Proc Natl Acad Sci U S A. 113(51):14582–14588. doi: 10.1073/pnas.1604994113.
  • Caulkins JPP, Grass D, Feichtinger G, Hartl RF, Kort PM, Prskawetz A, Seidl A, Wrzaczek S. 2021. The optimal lockdown intensity for COVID-19. J Math Econ. 93:102489. doi: 10.1016/j.jmateco.2021.102489.
  • Chen D, Xue Y, Xiao Y, Ferrari M. 2021. Determining travel fluxes in epidemic areas. PLoS Comput Biol. 17(10):e1009473. doi: 10.1371/journal.pcbi.1009473.
  • David JF, Iyaniwura SA. 2022. Effect of human mobility on the spatial spread of airborne diseases: An epidemic model with indirect transmission. Bull Math Biol. 84(63). doi: 10.1007/s11538-022-01020-8.
  • David JF, Iyaniwura SA, Ward MJ, Fred B. 2020. A novel approach to modelling the spatial spread of airborne diseases: an epidemic model with indirect transmission. Math Biosci Eng. 17(4):3294–3328. doi: 10.3934/mbe.2020188.
  • Diekmann O, Heesterbeek JAP. 2000. Mathematical epidemiology of infectious diseases. Wiley series of mathematical and computational biology. England: Wiley.
  • Dontchev AL, Hager WW, Veliov VM. 2000. Second-order Runge-Kutta approximations in control constrained optimal control. SIAM J Num Anal. 38(1):202–226. doi: 10.1137/S0036142999351765.
  • Geng X, Katul GG, Gerges F, Bou-Zeid E, Nassif H, Boufadel MC. 2020. A kernel-modulated SIR model for COVID-19 contagious spread from country to continent. PNAS. 118(21):e2023321118. doi: 10.1073/pnas.2023321118.
  • Grimee M, Bekker-Nielsen Dunbar M, Hofmann F, Held L. 2021. Modelling the effect of a border closure between Switzerland and Italy on t e spatiotemporal spread of COVID-19 in Switzerland. Spatial Stat. 49:100552. doi: 10.1016/j.spasta.2021.100552.
  • Hethcote HW. 1996. Modeling heterogeneous mixing in infectious disease dynamics. In models for infectious human diseases (eds. V. Isham and G. F. H. Medley). Cambridge, UK: Cambridge University Press; pp. 215–238.
  • Jia Q, Li J, Lin H, Tian F, Zhu G. 2022. The spatiotemporal transmission dynamics of COVID-19 among multiple regions: A modeling study in Chinese provinces. Nonlinear Dyn. 107(1):1313–1327. doi: 10.1007/s11071-021-07001-1.
  • Kaslow DC. 2021. Force of infection: a determinant of vaccine efficacy? NPJ Vaccines. NPJ Vaccines. 6(1):51. doi: 10.1038/s41541-021-00316-5.
  • Kovacevic R, Stilianakis NI, Veliov VM. 2022. A distributed optimal control epidemiological model applied to COVID-19 pandemic. SIAM J Control Optim. 60(2):S221–S245. doi: 10.1137/20M1373840.
  • Mazzoli M, Pepe E, Mateo D, Cattulo C, Gauvin L, Bajardi P, Tizzoni M, Hernando A, MEloni S, Ramasco JJ. 2021. Interplay between mobility, multi-seeding and lockdowns shapes COVID-19 local impact. PLoS Comput Biol. 17(10):e1009326. doi: 10.1371/journal.pcbi.1009326.
  • Nakata Y, Roest G. 2015. Global analysis for spread of infectious diseases via transportation networks. J Math Biol. 70(6):1411–1456. doi: 10.1007/s00285-014-0801-z.
  • Parino F, Zino L, Porfini M, Rizzo A. 2021. Modelling and predicting the effect of social distancing and travel restrictions on COIVD-19 spreading. J Royal Soc Interface. 18(175):20200875. doi: 10.1098/rsif.2020.0875.
  • Raković SV, Levine WS. 2019. Handbook of model predictive control. BIrkhaeuser.
  • Rapti Z, Cuevas-Maraver J, Kontou E, Liu DY, PG K, Barmann M, QY C, Kevrekidis GA. 2023. The role of mobility in dynamics of the COVID-19 epidemic in Andalusia. Bull Math Biol. 85(54). doi: 10.1007/s11538-023-01152-5.
  • Schoot Uiterkamp MHH, Goesgens M, Heesterbeck H, van der Hofstad R, Litvak N. 2022. The role of inter-regional mobility in forecasting SARS-CoV-2 transmission. J R Soc Interface. 19(193):20220486. doi: 10.1098/rsif.2022.0486.
  • Topirceanou A, Precup R-E. 2021. A novel geo-hierarchical population mobility model for spatial spreading of resurgent epidemics. Sci Rep. 11(1):14341. doi: 10.1038/s41598-021-93810-8.
  • Van den Driessche P, Watmough J. 2008. Further notes on the basic reproduction number. In Brauer F, Van den Driessche P, and Wu J, editors. Mathematical epidemiology. Lecture notes in mathematics. Berlin Heidelberg: Springer; p. 159–178.
  • Zakary O, Larrache, 2016. Effect of awareness programs and travel-blocking operations in the control of HIV/AIDS outbreaks: a multi-domains SIR model. Adv Differ Equ. 2016(1):169. doi:10.1186/s13662-016-0900-9.
  • Zhang F, Jin Z. 2022. Effect of travel restrictions, contact tracing and vaccination on control of emerging infectious diseases: transmission of COVID-19 as a case study. Math Biosci Eng. 19(3):3177–3201. doi: 10.3934/mbe.2022147.