71
Views
3
CrossRef citations to date
0
Altmetric
Articles

Elastic null curve flows, nonlinear C-integrable systems, and geometric realization of Cole-Hopf transformations

&
Pages 357-392 | Received 13 Aug 2019, Accepted 13 Sep 2019, Published online: 04 May 2020

References

  • R.E. Goldstein and D.M. Petrich, The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane, Phys. Rev. Lett., 67 (1991), 3203–3206. doi: 10.1103/PhysRevLett.67.3203
  • R.E. Goldstein and D.M. Petrich, Solitons, Euler’s equation, and vortex patch dynamics, Phys. Rev. Lett., 69 (1992), 555–558. doi: 10.1103/PhysRevLett.69.555
  • C. Wexler, A.T. Dorsey, Solitons on the Edge of a Two-Dimensional Electron System, Phys. Rev. Lett., 82 (1999), 620–623. doi: 10.1103/PhysRevLett.82.620
  • H. Hasimoto, Soliton on a vortex filament, J. Fluid Mech., 51 (1972), 477–485. doi: 10.1017/S0022112072002307
  • Y. Fukumoto and T. Miyazaki, Three dimensional distorsions of a vortex filament with axial velocity, J. Fluid Mech., 222 (1991), 369–416. doi: 10.1017/S0022112091001143
  • G.L. Lamb, Solitons on moving space curves, J. Math. Phys., 18 (1977), 1654–1661. doi: 10.1063/1.523453
  • G. Mari Beffa, J. Sanders, J.-P. Wang, On integrable systems in 3-dimensional Riemannian geometry, J. Nonlinear Sci., 12 (2002), 143–167. doi: 10.1007/s00332-001-0472-y
  • S.C. Anco and R. Myrzakulov, Integrable generalizations of Schrödinger maps and Heisenberg spin models from Hamiltonian flows of curves and surfaces, J. Geom. Phys., 60 (2010), 1576–1603. doi: 10.1016/j.geomphys.2010.05.013
  • R. Bishop, There is more than one way to frame a curve, Amer. Math. Monthly, 82 (1975), 246–251. doi: 10.1080/00029890.1975.11993807
  • S.C. Anco and K. Alkan, Integrable systems from inelastic curve flows in 2- and 3-dimensional Minkowski space, J. Nonlin. Math. Phys., 23 (2) (2016), 256–299. doi: 10.1080/14029251.2016.1175822
  • R. Pensor and W. Rindler, Spinors & Space-Time: Volume 1, Two-Spinor Calculus & Relativistic Fields, Cambridge University Press, 1984; ibid, Spinors & Space-Time: Volume 2, Spinor & Twistor Methods in Space-Time Geometry, Cambridge University Press, 1986.
  • S. Joseph, R. Nityananda, Transport along null curves, J. Phys. A, Math. Gen., 33 (14) (2000), 2895–2905. doi: 10.1088/0305-4470/33/14/318
  • P. Budinich, Null vectors, spinors, and strings, Comm. Math. Phys., 107 (1986), 455–465. doi: 10.1007/BF01220999
  • L.P. Hughston, W.T. Shaw, Real classical strings, Proc. Roy. Soc. A, 414 (1987), 415–422.
  • A. Nersessian, E. Ramos, Massive spinning particles and geometry of the null curves, Phys. Lett. B, 445 (1–2) (1998), 123–128. doi: 10.1016/S0370-2693(98)01408-7
  • A. Fernandez, A. Gimenez, P. Lucas, Geometrical particle models on 3D null curves, Phys. Lett. B, 543 (3–4) (2002), 311-317. doi: 10.1016/S0370-2693(02)02450-4
  • J.L. Synge, Geometry of dynamical null lines, Tensor, N.S., 24 (1972), 69–74.
  • B. O’Neill, Semi-Riemannian Geometry With Applications to Relativity, (Elsevier, 1983).
  • A. Fernandez, A. Gimenez, P. Lucas, Null helices in Lorentzian space forms, Int. J. Mod. Phys. A, 16(2001), 4845–4863. doi: 10.1142/S0217751X01005821
  • S.K. Nurkan, M.K. Karacan, Y. Tuncer, Darboux rotation axis of a null curve in Minkowski 3-space, J. Math. Comput. Sci., 6 (5) (2016), 706–711.
  • K.L. Duggal, D.H. Jin, Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, (World Scientific, 2007). doi: 10.1142/6449
  • W.B. Bonnor, Null curves in a Minkowski space-time, Tensor, N.S., 20 (1969), 229–242.
  • E. Musso and L. Nicolodi, Hamiltonian flows on null curves, Nonlinearity, 23 (2010), 2117–2129. doi: 10.1088/0951-7715/23/9/005
  • T.C. Anderson, G. Mari Beffa, A completely integrable flow of star-shaped curves on the light cone in Lorentzian R4, J. Phys. A, 44 (2011), 445203, 21 pp. doi: 10.1088/1751-8113/44/44/445203
  • M.E. Gage, Curve shortening makes convex curves circular, Invent. Math., 76 (1984), 357–364. doi: 10.1007/BF01388602
  • J. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math., 9 (3) (1951), 225–236.
  • E. Hopf, The partial differential equation ut + uux = µuxx, Commun. Pure Appl. Math., 3 (3) (1950), 201–230. doi: 10.1002/cpa.3160030302
  • F. Calagero, Why are certain nonlinear PDEs both widely applicable and integrable? In: What is integrability? (Ed. V.E. Zakharov), 1–61. Springer-Verlag, New York (1991).
  • P.J. Olver, Applications of the groups to differential equations, (2nd ed.) Springer-Verlag, 1993. doi: 10.1007/978-1-4612-4350-2
  • S.I. Svinolupov, On the analogues of the Burgers equation, Phys. Lett. A, 135 (1989), 32–36. doi: 10.1016/0375-9601(89)90721-4
  • F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys., 19 (1978), 1156– 1162. doi: 10.1063/1.523777
  • A.V. Mikhailov, A.B. Shabat, V.V. Sokolov, The symmetry approach to classification of integrable equations, 115–184; in What is Integrability?, ed. V.E. Zakharov, (Springer-Verlag, 1991) doi: 10.1007/978-3-642-88703-1_4
  • F. Catoni, D. Boccaletti, R. Cannata, V. Catoni, P. Zampetti, Geometry of Minkowski Space-Time, (Springer, 2011). doi: 10.1007/978-3-642-17977-8
  • J. Sanders, J.-P. Wang, Integrable systems in n-dimensional Riemannian geometry, Moscow Mathematical Journal, 3 (2003), 1369–1393. doi: 10.17323/1609-4514-2003-3-4-1369-1393

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.