300
Views
4
CrossRef citations to date
0
Altmetric
Articles

Group analysis of the generalized Burnett equations

&
Pages 494-508 | Received 14 Nov 2019, Accepted 28 Nov 2019, Published online: 04 May 2020

References

  • S.N. Aristov, A class of exact solutions for the Navier-Stokes compressible viscous gas equations, Dokl. Akad. Nauk SSSR, 313 (6) (1990), 1403–1406.
  • S.N. Aristov and V.I. Grabovskii, Self-similar solution of the Navier-Stokes equations governing gas flows in rotary logarithmically spiral two-dimensional channels, Fluid Dynamics, 313 (6) (1995), 838– 844, Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 44–50, November-December, 1995. doi: 10.1007/BF02078198
  • G.W. Bluman, A.F. Cheviakov and S.C. Anco, Applications of Symmetry Methods to Partial Differential Equations, (Springer, New York, 2010). Applied Mathematical Sciences, Vol. 168.
  • A.V. Bobylev, The Chapman-Enskog and Grad methods for solving the Boltzmann equation, Sov. Phys. Dokl., 27 (1982), 27–29.
  • A.V. Bobylev, Instabilities in the Chapman-Enskog expansion and hyperbolic Burnett equations, J. Stat. Phys., 124 (2006), p. 371. doi: 10.1007/s10955-005-8087-6
  • A.V. Bobylev, Generalized Burnett hydrodynamics, J. Stat. Phys., 132 (2008), p. 569.
  • A.V. Bobylev, Boltzmann equation and hydrodynamics beyond Navier-Stokes, Phil. Trans. R. Soc. A, 376 (20170227) (2018), http://doi.org/10.1098/rsta.2017.0227.
  • A.V. Bobylev, M. Bisi, M.P. Cassinari and G. Spiga, Shock wave structure for generalized Burnett equations, Physics of Fluids, 23 (030607) (2011).
  • M.A. Brutyan, Self-similar solutions of Jeffry-Hamel type for flow of viscous gas, Scientific Notes of CAHI, 48 (6) (2017), 13–22.
  • V.V. Bublik, Group classification of two-dimensional equations of motion of a viscous thermoconductive perfect gas, Journal of Applied Mechanics and Technical Physics, 37 (2) (1996), 27–34. doi: 10.1007/BF02382422
  • V.V. Bublik, Group Properties of Viscous Thermoconductive Gas Equations, PhD thesis, Institute of Theoretical and Applied Mechanics, (Novosibirsk, 2000).
  • A.P. Byrkin, On one exact solution of the Navier-Stokes equations of a compressible gas, Journal of Applied Mathematics and Mechanics, 33 (1) (1969), 152–157. doi: 10.1016/0021-8928(69)90125-7
  • A.P. Byrkin, On exact solutions of the Navier-Stokes equations of a compressible gas flow in channels, Scientific Notes of CAHI, 1 (6) (1970), 15–21.
  • B.J. Cantwell, Introduction to symmetry analysis, (Cambridge University Press, Cambridge, 2002).
  • S. Chapman and T.G. Cowling, The mathematical theory of non-uniform gases, (Springer, New York, 1994).
  • N.H. Ibragimov (ed.), CRC Handbook of Lie Group Analysis of Differential Equations, (CRC Press, Boca Raton, 1994, 1995, 1996).
  • N.H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, (Wiley & Sons, Chichester, 1999).
  • N.H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 333 (2007), 311–328. doi: 10.1016/j.jmaa.2006.10.078
  • S. Jin and M. Slemrod, Regularization of the Burnett equations via relaxation, J. Stat. Phys., 103 (2001), p. 1009. doi: 10.1023/A:1010365123288
  • M.N. Kogan, Rarefied Gas Dynamics, (Plenum Press, New York, 1969).
  • J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, (Springer-Verlag, New York, 1994).
  • S.V. Meleshko, Group classification of two-dimensional stable viscous gas equations, International Journal of Non-Linear Mechanics, 34 (3) (1998), 449–456. doi: 10.1016/S0020-7462(98)00028-6
  • S.V. Meleshko, Group classification of two-dimensional steady viscous gas dynamics equations with arbitrary state equations, J.Phys. A: Math. Gen., 35 (2002), 3515–3533. doi: 10.1088/0305-4470/35/15/311
  • S.V. Meleshko, Methods for Constructing Exact Solutions of Partial Differential Equations, Mathematical and Analytical Techniques with Applications to Engineering, Mathematical and Analytical Techniques with Applications to Engineering, (Springer, New York, 2005).
  • E. Noether, Invariante Variationsprobleme, Nachr. d. Königlichen Gesellschaft der Wissenschaften zu Göttingen, Math-phys. Klasse, (1918), 235–257, English translation in: Transport Theory and Statistical Physics, vol. 1, No. 3, 1971, 186-207 (arXiv:physics/0503066 [physics.hist-ph]).
  • P.J. Olver, Applications of Lie Groups to Differential Equations, (Springer-Verlag, New York, 1986).
  • L.V. Ovsiannikov, Group Analysis of Differential Equations, (Nauka, Moscow, 1978). English translation, Ames, W.F., Ed., published by Academic Press, New York, 1982.
  • L.V. Ovsiannikov, On optimal system of subalgebras, Dokl. RAS, 333 (6) (1993), 702–704.
  • R.L. Seliger and G.B. Whitham, Variational principles in continuum mechanics, Proc. R. Soc. London. A, 305 (1968), 1–25.
  • V.V. Schennikov, On one class of exact solutions of the Navier-Stokes equations of the case of a compressible thermoconductive gas, Journal of Applied Mathematics and Mechanics, 33 (3) (1969), 582– 584. doi: 10.1016/0021-8928(69)90079-3
  • Y.D. Shmyglevski, Analytical study of gas dynamics and fluid, (Editorial URSS, Moscow, 1999) . in Russian.
  • H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows, (Springer, Berlin, 2006).
  • J.C. Williams, Conical nozzle flow with velocity slip and temperature jump, AIAA Journal, 5 (12) (1967), 2128–2134. doi: 10.2514/3.4397