35
Views
2
CrossRef citations to date
0
Altmetric
Articles

Finite genus solutions to the lattice Schwarzian Korteweg-de Vries equation

, &
Pages 633-646 | Received 22 Mar 2019, Accepted 25 Jan 2020, Published online: 04 Sep 2020

References

  • V.E. Adler, A.I. Bobenko and Yu. B. Suris, Classification of integrable equations on quadgraphs, Comm. Math. Phys., 233 (2003) 513–543.
  • V.I. Arnold, Mathematical Methods of Classical Mechanics, (Springer, Berlin, 1978).
  • J. Atkinson, J. Hietarinta and F.W. Nijhoff, Seed and soliton solutions of Adlers lattice equation, J. Phys. A: Math. Theor., 40 (2006) F1–F8.
  • M. Bruschi and O. Ragnisco, Nonlinear differential-difference equations, associated Bäcklund transformations and Lax technique, J. Phys. A: Math. Gen., 14 (1981) 1075–1081.
  • C.W. Cao, A classical integrable system and the involutive representation of solutions of the KdV equations, Acta Math. Sinica: New Series, 7 (1991) 216–223.
  • C.W. Cao and X.X. Xu, A finite genus solution of the H1 model, J. Phys. A: Math. Gen., 45 (2012) 055213 (13pp).
  • C.W. Cao and G.Y. Zhang, Integrable symplectic maps associated with the ZS-AKNS spectral problem, J. Phys. A: Math. Theor., 45 (2012) 265201 (15pp).
  • H.M. Farkas and I. Kra, Riemann Surfaces, (Springer, New York, 1992).
  • F. Gesztesy, H. Holden, J. Michor and G. Teschl, Soliton Equations and Their Algebro-Geometric Solutions. Volumn II: (1 + 1)-Dimensional Discrete Models, (Cambridge University Press, Cambridge, 2008).
  • B. Grammaticos, Y. Kosmann-Schwarzbach and T. Tamizhmani, Discrete Integrable Systems, (Springer, Berlin, 2004).
  • P. Griffiths and J. Harris, Principles of Algebraic Geometry, (Wiley, New York, 1978).
  • J. Hietarinta, N. Joshi and F.W. Nijhoff, Discrete Systems and Integrablity, (Cambridge University Press, Cambridge, 2016).
  • J. Hietarinta and C. Viallet, Weak Lax pairs for lattice equations, Nonlinearty, 25 (2011) 1955–1966.
  • J. Hietarinta and D.J. Zhang, Soliton solutions for ABS lattice equations: II. Casorations and bilinearization, J. Phys. A: Math. Theor., 42 (2009) 404006 (30pp).
  • A.N.W. Hone, V.B. Kuznetsov and O. Ragnisco, Bäcklund transformations for many body systems related to KdV, J. Phys. A: Math. Gen., 32 (27) (1999) L299–L306.
  • V.B. Kuznetsov and P. Vanhaecke, Bäcklund transformations for finite dimensional integrable systems: A geometric approach, Journal of Geometry and Physics, 44 (1) (2000) 1–40.
  • G. Lamé, Leçons sur les Coordonnées Curvilignes et leurs Diverses Applications, (Mallet-Bachelier, Paris, 1859).
  • D. Levi and R. Benguria, Bäcklund transformations and nonlinear differential difference equations, Proc. Natl. Acad. Sci. USA, 77 (1980) 5025–5027.
  • D. Levi, M. Petrera and C. Scimiterna, The lattice Schwarzian KdV equation and its symmetries, J. Phys. A: Math. Theor., 40 (2007) 12753–12761.
  • S.Y. Lou, Conformal invariance and integrable models, J. Phys. A: Math. Gen., 30 (1997) 4803–4813.
  • F.W. Nijhoff, J. Atkinson and J. Hietarinta, Soliton solutions for ABS lattice equation: I. Cauchy matrix approach, J. Phys. A: Math. Theor., 42 (2009) 404005 (34pp).
  • F.W. Nijhoff and J. Atkinson, Elliptic N-soliton solutions of ABS lattice equations, Int. Math. Res. Not., 2010 (2010) 3837–3895.
  • F.W. Nijhoff and H.W. Capel, The discrete Korteweg-de Vries equation, Acta Appl. Math., 39 (1995) 133–158.
  • F.W. Nijhoff, A.N.W. Hone and N. Joshi, On a Schwarzian PDE associated with the KdV hierarchy, Phys. Lett. A, 267 (2-3) (2000) 147–156.
  • G.R.W. Quispel, J.A.G. Roberts and C.J. Thompsonb, Integrable mappings and soliton equations, Phys. Lett. A, 126 (1988) 419–421.
  • A.G. Rasin, Infinitely many symmetries and conservation laws for quad-graph equations via the Gard- ner method, J. Phys. A: Math. Theor., 43 (2010) 235201 (11pp).
  • Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, (Birkhäuser, Basel, 2003).
  • M. Toda, Theory of Nonlinear Lattices (Springer, Berlin, 1981).
  • A.P. Veselov, Integrable maps, Russ. Math. Surv., 46 (1991) 3–45.
  • J. Weiss, M. Tabor and G. Carnevale, The Painléve property for partial differential equations, J. Math. Phys., 24 (1983) 522–526.
  • J. Weiss, The Painléve property for partial differential equations. II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative, J. Math. Phys., 24 (1983) 1405–1413.
  • P. Xenitidis, Symmetries and conservation laws of the ABS equations and corresponding differential difference equations of Volterra type, J. Phys. A: Math. Theor., 44 (2011) 435201 (22pp).
  • D.D. Zhang and D.J. Zhang, On decomposition of the ABS lattice equations and related Bäcklund transformations, J. Nonl. Math. Phys., 25 (2018) 34–53.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.