296
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Characterisation of modified asphalt mixtures with lignin of pinus and eucalyptus woods

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 253-264 | Received 21 Feb 2022, Accepted 09 Jun 2022, Published online: 18 Jun 2022

References

  • American Association of State Highway and Transportation. 2014. AASHTO T 283: Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage. Washington, DC: AASHTO Publications.
  • American Association of State Highway and Transportation. 2019. AASHTO T342-11: Standard Method of Test for Determining Dynamic Modulus of Hot-Mix Asphalt Concrete Mixtures. Washington, DC: AASHTO Publications.
  • American Association of State Highway and Transportation. 2020. AASHTO T 391. Standard Method of Test for Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep. Washington, DC: AASHTO Publications.
  • American Society for Testing and Materials. 2014. ASTM D 4867M-09: Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures. Philadelphia, PA: ASTM International.
  • American Society for Testing and Materials. 2015a. ASTM C 127: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. Philadelphia, PA: ASTM International.
  • American Society for Testing and Materials. 2015b. ASTM D 4402: Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. Philadelphia, PA: ASTM International.
  • American Society for Testing and Materials. 2017. ASTM C 496M: Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. Philadelphia, PA: ASTM International.
  • American Society for Testing and Materials. 2019. ASTM D 2872: Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test). Philadelphia, PA: ASTM International.
  • American Society for Testing and Materials. 2020a. ASTM D36M-14. Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). Philadelphia, PA: ASTM International.
  • American Society for Testing and Materials. 2020b. ASTM D 5M: Standard Test Method for Penetration of Bituminous Materials. Philadelphia, PA: ASTM International.
  • American Society for Testing and Materials. 2020c. ASTM D 6925: Standard Test Method for Preparation and Determination of the Relative Density of Asphalt Mix Specimens by Means of the Superpave Gyratory Compactor. Philadelphia, PA: ASTM International.
  • American Society for Testing and Materials. 2020d. ASTM D 7369: Standard Test Method for Determining the Resilient Modulus of Asphalt Mixtures by Indirect Tension Test. Philadelphia, PA: ASTM International.
  • American Society for Testing and Materials. 2020e. ASTM D 7405: Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer. Philadelphia, PA: ASTM International.
  • American Society for Testing and Materials. 2021. ASTM D 6373: Standard Specification for Performance-Graded Asphalt Binder. Philadelphia, PA: ASTM International.
  • Arabani, M., and A.S. Tahami. 2017. “Assessment of Mechanical Properties of Rice Husk Ash Modified Asphalt Mixture.” Construction and Building Materials 149: 350–358. doi:10.1016/j.conbuildmat.2017.05.127.
  • Arafat, S., N. Kumar, N.M. Wasiuddin, E.O. Owhe, and J.G. Lynam. 2019. “Sustainable Lignin to Enhance Asphalt Binder Oxidative Aging Properties and Mix Properties.” Journal of Cleaner Production 217: 456–468. doi:10.1016/j.jclepro.2019.01.238.
  • Aziz, M.M.A., M.T. Rahman, M.R. Hainin, and W.A.W.A. Bakar. 2015. “An Overview on Alternative Binders for Flexible Pavement.” Construction and Building Materials 84: 315–319. doi:10.1016/j.conbuildmat.2015.03.068.
  • Batista, K.B. 2017. Desenvolvimento de Ligantes Asfálticos Modificados com Lignina como Aditivo Antienvelhecimento. Minas Gerais, Brazil: Departament of Civil Engineering, Federal University of Minas Gerais. http://hdl.handle.net/1843/BUOS-AVTMCJ.
  • Batista, K.B., R.P.L. Padilha, T.O. Castro, C.F.S.C. Silva, M.F.A.S. Araújo, L.F.M. Leite, V.M.D. Pasa, and V.F.C. Lins. 2018. “High-temperature, low-temperature and Weathering Aging Performance of Lignin Modified Asphalt Binders.” Industrial Crops and Products 111: 107–116. doi:10.1016/j.indcrop.2017.10.010.
  • Bernucci, L.L.B., L.M.G. Motta, J.A.P. Ceratti, and J.B. Soares. 2010. Pavimentação asfáltica - Formação básica para engenheiros. Brazil: Rio de Janeiro.
  • Brown, E.R., P.S. Kandhal, F.L. Roberts, Y.R. Kim, D. Lee, and T.W. Kenndy. 2010. Hot Mix Asphalt Materials, Mixture Desing, and Construction. Lanham: NAPA Reserch and Education Foundation.
  • Colberta, B., M.R. Mohd Hasan, and Z. You. 2016. “A Hybrid Strategy in Selecting Diverse Combinations of Innovative Sustainable Materials for Asphalt Pavements.” Journal of Traffic and Transportation Engineering 3. doi:10.1016/j.jtte.2016.02.001.
  • Coutinho, R.P., R.A. Freire, V.T.F. Castelo Branco, and J.B. Soares. 2011. “Identificação do comportamento viscoelástico não-linear e do dano em misturas asfálticas utilizando testes de varredura de tensão.” Transportes 19 (3): 35–41. doi:10.14295/transportes.v19i3.533.
  • Departamento Nacional de Infraestrutura de Transportes. 1994. DNIT PRO 269: Projeto de restauração de pavimentos flexíveis. Rio de Janeiro, Brazil.
  • Departamento Nacional de Infraestrutura de Transportes. 2006. DNIT 031-ES: Pavimentos flexíveis - Concreto asfáltico - Especificação de serviço. Rio de Janeiro, Brazil.
  • Di Benedetto, H., F. Olard, C. Sauzéat, and B. Delaporte. 2004. “Linear Viscoelastic Behaviour of Bituminous Materials: From Binders to Mixes.” Road Materials and Pavement Design 5 (sup1): 163–202. doi:10.1080/14680629.2004.9689992.
  • Dong, Z.J., X.B. Gong, L.D. Zhao, and L. Zhang. 2014. “Mesostructural Damage Simulation of Asphalt Mixture Using Microscopic Interface Contact Models.” Construction and Building Materials 53: 665–673. doi:10.1016/j.conbuildmat.2013.11.109.
  • Fayzrakhmanova, G.M., S.A. Zabelkin, A.N. Grachev, and V.N. Bashkirov. 2015. “Study of the Properties of a Composite Asphalt Binder Using Liquid Products of Wood Fast Pyrolysis.” Polymer Science, Series D 9 (2): 181–184. doi:10.1134/S1995421216020052.
  • Gao, J., H. Wang, C. Liu, D. Ge, Z. You, and M. Yu. 2020. “High-temperature Rheological Behavior and Fatigue Performance of Lignin Modified Asphalt Binder.” Construction and Building Materials 230. doi:10.1016/j.conbuildmat.2019.117063.
  • Grossman, A., and V. Wilfred. 2019. “Lignin-based Polymers and Nanomaterials.” Current Opinion in Biotechnology 57: 56. doi:10.1016/j.copbio.2018.10.009.
  • He, M., C. Tu, D.W. Cao, and Y.J. Chen. 2019. “Comparative Analysis of bio-binder Properties Derived from Different Sources.” International Journal of Pavement Engineering 20 (7): 792–800. doi:10.1080/10298436.2017.1347434.
  • Heidari, M.R., G. Heravi, and A.N. Esmaeeli. 2020. “Integrating life-cycle Assessment and life-cycle Cost Analysis to Select Sustainable Pavement: A Probabilistic Model Using Managerial Flexibilities.” Journal of Cleaner Production 254. doi:10.1016/j.jclepro.2020.120046.
  • Johansen, G.L. 2018. Lignin First: The Borregaard Approach to Lignocellulosic Sugars and Bioethanol. India.
  • Karami, M., H. Nikraz, S. Sebayang, and L. Irianti. 2017. “Laboratory Experiment on Resilient Modulus of BRA Modified Asphalt Mixtures.” International Journal of Pavement Research and Technology 11 (1): 38–46. doi:10.1016/j.ijprt.2017.08.005.
  • Martinez, J.G.B. 2017. Asfaltos e Misturas Modificadas com Materiais Alternativos. Brasília, Brazil: Departament of Civil Engineering, University of Brasília. https://repositorio.unb.br/handle/10482/31645.
  • Mohd Hasan, M.R., and Z. You. 2019. “Comparative Study of Ethanol Foamed Asphalt Binders and Mixtures Prepared via Manual Injection and Laboratory Foaming Device.” Journal of Traffic and Transportation Engineering 6. doi:10.1016/j.jtte.2018.06.005.
  • Norgbey, E., J. Huang, V. Hirsch, W.J. Liu, M. Wang, O. Ripke, Y. Li, et al. 2020. “Unravelling the Efficient Use of Waste Lignin as a Bitumen Modifier for Sustainable Roads.” Construction and Building Materials 230. doi:10.1016/j.conbuildmat.2019.116957.
  • Otto, G.G. 2009. Misturas Asfálticas Mornas – Verificação da Fadiga e do Módulo Complexo. Santa Catarina, Brazil: Departament of Civil Engineering, Federal University of Santa Catarina.
  • Pan, T. 2012. “A First Principles Based Chemophysical Environment for Studying Lignins as an Asphalt Antioxidant.” Construction and Building Materials 36: 654–664. doi:10.1016/j.conbuildmat.2012.06.012.
  • Peng, C., S. Huang, Z. You, F. Xu, L. You, H. Ouyang, T. Li, et al. 2020. “Effect of a lignin-based Polyurethane on Adhesion Properties of Asphalt Binder during UV Aging Process.” Construction and Building Materials 247: 118547. doi:10.1016/j.conbuildmat.2020.118547.
  • Pourtahmasb, M.S., M.R. Karim, and S. Shamshirband. 2015. “Resilient Modulus Prediction of Asphalt Mixtures Containing Recycled Concrete Aggregate Using an Adaptive Neurofuzzy Methodology.” Construction and Building Materials 82: 257–263. doi:10.1016/j.conbuildmat.2015.02.030.
  • Santos, N.S., J.K.G. Rodrigues, and A.M.G.D. Mendonça. 2018. “Efeito da adição de lignina Kraft proveniente da madeira de eucalipto na reologia do CAP 50/70.” Matéria 23. doi:10.1590/S1517-707620180003.0492.
  • Specht, L.P., L.F.A.L. Babadopulos, H. Di Beneditto, C. Sauzéat, and J.B. Soares. 2017. “Application of the Theory of Viscoelasticity to Evaluate the Resilient Modulus Test in Asphalt Mixes.” Construction and Building Materials 149: 648–658. doi:10.1016/j.conbuildmat.2017.05.037.
  • Wang, H., and K. Derewecki (2013). “Rheological Properties of Asphalt Binder Partially Substituted with Wood Lignin.” Airfield & Highway Pavement Conference. Los Angeles, California, United States.
  • Wang, W., L. Wang, H. Xiong, and R. Luo. 2019. “A Review and Perspective for Research on Moisture Damage in Asphalt Pavement Induced by Dynamic Pore Water Pressure.” Construction and Building Materials 204: 631–642. doi:10.1016/j.conbuildmat.2019.01.167.
  • Wang, C., H. Wang, M. Oeser, and M.R. Mohd Hasan. 2020. “Investigation on the Morphological and Mineralogical Properties of Coarse Aggregates under VSI Crushing Operation.” International Journal of Pavement Engineering. doi:10.1080/10298436.2020.1714043.
  • Wu, J., Q. Liu, C. Wang, W. Wu, and W. Han. 2020. “Investigation of Lignin as an Alternative Extender of Bitumen for Asphalt Pavements.” Journal of Cleaner Production. doi:10.1016/j.jclepro.2020.124663.
  • Xu, G., H. Wang, and H. Zhu. 2017. “Rheological Properties and anti-aging Performance of Asphalt Binder Modified with Wood Lignin.” Construction and Building Materials 51. doi:10.1016/j.conbuildmat.2017.06.151.
  • Yusoff, N.I.M., E. Chailleux, and G.D. Airey. 2011. “A Comparative Study of the Influence of Shift Factor Equations on Master Curve Construction.” International Journal of Pavement Research and Technology 4: 324–336.
  • Zhang, X., K. Zhang, C. Wu, K. Liu, and K. Jiang. 2020. “Preparation of bio-oil and Its Application in Asphalt Modification and Rejuvenation: A Review of the Properties, Practical Application and Life Cycle Assessment.” Construction and Building Materials 262: 120528. doi:10.1016/j.conbuildmat.2020.120528.
  • Zheng, X., S.M. Easa, Z. Yang, T. Ji, and Z. Jiang. 2019. “Life-cycle Sustainability Assessment of Pavement Maintenance Alternatives: Methodology and Case Study.” Journal of Cleaner Production 213. doi:10.1016/j.jclepro.2018.12.227.
  • Ziari, H., A. Amini, A. Moniri, and M. Habibpour. 2020. “Using the GMDH and ANFIS Methods for Predicting the Crack Resistance of Fibre Reinforced High RAP Asphalt Mixtures.” Road Materials and Pavement Design. doi:10.1080/14680629.2020.1748693.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.