127
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Analytical approach to quantify the pull-out behaviour of hooked end steel fibres

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 60-80 | Received 08 Jun 2022, Accepted 23 Aug 2022, Published online: 12 Sep 2022

References

  • Abdallah, S., and D. W Rees. 2019. “Comparisons between Pull-Out Behaviour of Various Hooked-End Fibres in Normal–High Strength Concretes.” International Journal of Concrete Structures and Materials 13 (1): 1–15. https://doi.org/10.1186/s40069-019-0337-0.
  • Akcay, B., and D. S. Ozsar. 2019. “Do Polymer Fibres Affect the Distribution of Steel Fibres in Hybrid Fibre Reinforced Concretes.” Construction and Building Materials 228: 116732. doi:10.1016/j.conbuildmat.2019.116732.
  • Alwan, J. M., A. E. Naaman, and P. Guerrero. 1999. “Effect of Mechanical Clamping on the pull-out Response of Hooked Steel Fibers Embedded in Cementitious Matrices.” Concrete Science and Engineering 1 (1): 15–25.
  • Barr, B. 1987. “Fracture Characteristics of FRC Materials in Shear.” Special Publication 105: 27–54.
  • Cadoni, E., A. Meda, and G. A. Plizzari. 2009. “Tensile Behaviour of FRC under High strain-rate.” Materials and Structures 42 (9): 1283–1294. doi:10.1617/s11527-009-9527-6.
  • Casanova, P., and P. Rossi. 1997. “Can Steel Fibers Replace Transverse Reinforcements in Reinforced Concrete Beams.” Materials Journal 94 (5): 341–354. doi:10.14359/9874.
  • Choi, K. K., P. Hong-Gun, and J. K. Wight. 2007. “Shear Strength of Steel fiber-reinforced Concrete Beams without Web Reinforcement.” ACI Structural Journal 104 (1): 12.
  • Chu, S. H., and A. K. H. Kwan. 2019. “Mixture Design of self-levelling ultra-high Performance FRC.” Construction and Building Materials 228: 116761. doi:10.1016/j.conbuildmat.2019.116761.
  • Chu, S. H., L. G. Li, and A. K. H. Kwan. 2018. “Fibre Factors Governing the Fresh and Hardened Properties of Steel FRC.” Construction and Building Materials 186: 1228–1238. doi:10.1016/j.conbuildmat.2018.08.047.
  • Cunha, V. M., J.A. Barros, and J. Sena-Cruz. 2007. “Pullout Behaviour of Hooked-End Steel Fibres in Self-Compacting Concrete.” Technical report, 06-DEC/E-04, University of Minho, Portugal. https://repositorium.sdum.uminho.pt/bitstream/1822/7336/1/TR-009-2007_07-DEC-E-06.pdf
  • Cunha, V. M., J. A. Barros, and J. M. Sena-Cruz. 2010. “Pullout Behavior of Steel Fibers in self-compacting Concrete.” Journal of Materials in Civil Engineering 22 (1): 1–9. doi:10.1061/(ASCE)MT.1943-5533.0000001.
  • Eid, M. N. 2020. Proposal of a Mix Design Method for Low Cement Fiber Reinforced Concrete. Doctoral dissertation, Université d’Ottawa/University of Ottawa.
  • Kang, J., K. Kim, Y.M. Lim, and J.E. Bolander. 2014. “Modeling of fiber-reinforced Cement Composites: Discrete Representation of Fiber Pullout.” International Journal of Solids and Structures 51 (10): 1970–1979. doi:10.1016/j.ijsolstr.2014.02.006.
  • Kozicki, J., and J. Tejchman. 2010. “Effect of Steel Fibres on Concrete Behavior in 2D and 3D Simulations Using Lattice Model.” Archives of Mechanics 62 (6): 465–492.
  • Kunieda, M., H. Ogura, N. Ueda, and H. Nakamura. 2011. “Tensile Fracture Process of Strain Hardening Cementitious Composites by Means of three-dimensional meso-scale Analysis.” Cement and Concrete Composites 33 (9): 956–965. doi:10.1016/j.cemconcomp.2011.05.010.
  • Laranjeira, F., A. Aguado, and C. Molins. 2010a. “Predicting the Pullout Response of Inclined Straight Steel Fibers.” Materials and Structures 43 (6): 875–895. doi:10.1617/s11527-009-9553-4.
  • Laranjeira, F., C. Molins, and A. Aguado. 2010b. “Predicting the Pullout Response of Inclined Hooked Steel Fibers.” Cement and Concrete Research 40 (10): 1471–1487. doi:10.1016/j.cemconres.2010.05.005.
  • Li, V. C., H. Stang, and H. Krenchel. 1993. “Micromechanics of Crack Bridging in fibre-reinforced Concrete.” Materials and Structures 26 (8): 486–494. doi:10.1007/BF02472808.
  • Meda, A., F. Minelli, and G. A. Plizzari. 2012. “Flexural Behaviour of RC Beams in Fibre Reinforced Concrete.” Composites Part B: Engineering 43 (8): 2930–2937. doi:10.1016/j.compositesb.2012.06.003.
  • Naaman, A. E., G. G. Namur, J. M. Alwan, and H. S. Najm. 1991. “Fiber Pullout and Bond Slip. I: Analytical Study.” Journal of Structural Engineering 117 (9): 2769–2790. doi:10.1061/(ASCE)0733-9445(1991)117:9(2769).
  • Noghabai, K. 2000. “Beams of Fibrous Concrete in Shear and Bending: Experiment and Model.” Journal of Structural Engineering 126 (2): 243–251. doi:10.1061/(ASCE)0733-9445(2000)126:2(243).
  • Oliver, J., D.F. Mora, A.E. Huespe, and R. Weyler. 2012. “A Micromorphic Model for Steel Fiber Reinforced Concrete.” International Journal of Solids and Structures 49 (21): 2990–3007. doi:10.1016/j.ijsolstr.2012.05.032.
  • Olver, F. W. J., A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain eds. 2020. “NIST Digital Library of Mathematical Functions.” Accessed 16 July 2021. https://dlmf.nist.gov/about/news/#S1.I1.i3.
  • Robins, P., S. Austin, and P. Jones. 2002. “Pull-out Behaviour of Hooked Steel Fibres.” Materials and Structures 35 (7): 434–442. doi:10.1007/BF02483148.
  • Rossi, P. 2013. “Influence of Fibre Geometry and Matrix Maturity on the Mechanical Performance of Ultra high-performance cement-based Composites.” Cement and Concrete Composites 37: 246–248. doi:10.1016/j.cemconcomp.2012.08.005.
  • Schauffert, E.A., and G. Cusatis. 2012. “Lattice Discrete Particle Model for fiber-reinforced Concrete. I: Theory.” Journal of Engineering Mechanics 138 (7): 826–833. doi:10.1061/(ASCE)EM.1943-7889.0000387.
  • Schumacher, P. 2006. “Rotation Capacity of self-compacting Steel Fiber Reinforced Concrete.” PhD Thesis., Delft University of Technology.
  • Simões, T., C. Octávio, J. Valença, H. Costa, D. Dias-da-Costa, and E. Júlio. 2017. “Influence of Concrete Strength and Steel Fibre Geometry on the fibre/matrix Interface.” Composites Part B: Engineering 122: 156–164. doi:10.1016/j.compositesb.2017.04.010.
  • Soetens, T., A. Van Gysel, S. Matthys, and L. Taerwe. 2013. “A semi-analytical Model to Predict the pull-out Behaviour of Inclined hooked-end Steel Fibres.” Construction and Building Materials 43: 253–265. doi:10.1016/j.conbuildmat.2013.01.034.
  • Soulioti, D. V., N. M. Barkoula, A. Paipetis, and T. E. Matikas. 2011. “Effects of Fibre Geometry and Volume Fraction on the Flexural Behaviour of Steel‐fibre Reinforced Concrete.” Strain 47: e535–e541. doi:10.1111/j.1475-1305.2009.00652.x.
  • Stang, H., and T. Aarre. 1992. “Evaluation of Crack Width in FRC with Conventional Reinforcement.” Cement and Concrete Composites 14 (2): 2. doi:10.1016/0958-9465(92)90007-I.
  • Stang, H., Z. Li, and S. P. Shah. 1990. “Pullout Problem: Stress versus Fracture Mechanical Approach.” Journal of Engineering Mechanics 116 (10): 2136–2150. doi:10.1061/(ASCE)0733-9399(1990)116:10(2136).
  • Sturm, A. B., and P. Visintin. 2019. “Local Bond Slip Behavior of Steel Reinforcing Bars Embedded in Ultra High Performance Fibre Reinforced Concrete.” Structural Concrete 20 (1): 108–122. doi:10.1002/suco.201700149.
  • Sturm, A. B., P. Visintin, J. Vaculik, D. J. Oehlers, R. Seracino, and S. T. Smith. 2019. “Analytical Approach for Global load-slip Behaviour of FRP Plates Externally Bonded to Brittle Substrates with Anchors.” Composites Part B: Engineering 160: 177–194. doi:10.1016/j.compositesb.2018.10.024.
  • Sukontasukkul, P. 2004. “Tensile Behaviour of Hybrid fibre-reinforced Concrete.” Advances in Cement Research 16 (3): 115–122. doi:10.1680/adcr.2004.16.3.115.
  • Türkmen, Ö. S., S. N. Wijte, J. Vaculik, B. T. De Vries, and J. M. Ingham. 2020. “High-speed Pullout Behavior of deep-mounted Cfrp Strips Bonded with a Flexible Adhesive to Clay Brick Masonry.” Structures 28: 1153–1172. doi:10.1016/j.istruc.2020.09.026.
  • Vaculik, J., A.B. Sturm, P. Visintin, and M.C. Griffith. 2018. “Modelling FRP-To-Substrate Joints Using the Bilinear Bond-Slip Rule with Allowance for Friction—full-Range Analytical Solutions for Long and Short Bonded Lengths.” International Journal of Solids and Structures 135: 245–260. doi:10.1016/j.ijsolstr.2017.11.024.
  • Volkersen, O. 1938. “Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten” [The riveting force distribution in tensioned rivet connections with constant tab cross-sections]. [In German.].” Luftfahrtfor schung 15: 41–47.
  • Wille, K., and A. E. Naaman. 2012. “Pullout Behavior of High-Strength Steel Fibers Embedded in Ultra-High-Performance Concrete.” ACI Materials Journal 109: 4.
  • Yu, R., P. Spiesz, and H. J. H. Brouwers. 2014. “Mix Design and Properties Assessment of ultra-high Performance Fibre Reinforced Concrete (UHPFRC).” Cement and Concrete Research 56: 29–39. doi:10.1016/j.cemconres.2013.11.002.
  • Zhang, H., and R. C. Yu. 2016. “Inclined Fiber Pullout from A Cementitious Matrix: A Numerical Study.” Materials 9 (10): 800. doi:10.3390/ma9100800.
  • Zhan, Y., and G. Meschke. 2014. “Analytical Model for the Pullout Behavior of Straight and Hooked-End Steel Fibers.” Journal of Engineering Mechanics 140 (12): 04014091. doi:10.1061/(ASCE)EM.1943-7889.0000800.
  • Zheng, Z., and D. Feldman. 1995. “Synthetic fibre-reinforced Concrete.” Progress in Polymer Science 20 (2): 185–210. doi:10.1016/0079-6700(94)00030-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.