107
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of superficially modified zinc oxide nanoparticles as an additive on the rheological performance of asphalt binder

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1211-1228 | Received 16 Nov 2021, Accepted 10 Aug 2023, Published online: 28 Aug 2023

References

  • Abansansari, H. F., & Modarres, A. (2017). Investigating effects of using nanomaterial on moisture susceptibility of hot-mix asphalt using mechanical and thermodynamic methods. Construction and Building Materials, 131, 667–675. https://doi.org/10.1016/j.conbuildmat.2016.11.052
  • Alamdary, Y. A., Singh, S., & Baaj, H. (2019). Laboratory simulation of the impact of solar radiation and moisture on long-term age conditioning of asphalt mixes. Road Materials and Pavement Design, 20(sup1), 521–532. https://doi.org/10.1080/14680629.2019.1587496
  • Ali, S. I. A., Ismail, A., Karim, M. R., Yusoff, N. I. M., Al-Mansob, R. A., & Aburkaba, E. (2016). Performance evaluation of Al2O3 nanoparticle-modified asphalt binder. Road Materials and Pavement Design, 18(6), 1251–1268. https://doi.org/10.1080/14680629.2016.1208621
  • American Association of State Highway and Transportation Officials. (2018). AASHTO TP 101-12: Standard method of test for estimating fatigue resistance of asphalt binders using the linear amplitude sweep. AASHTO.
  • American Association of State Highway and Transportation Officials. (2021). AASHTO M 320: Standard specification for performance-graded asphalt binder. Test standard specifications for transportation materials and methods of sampling and testing. AASHTO.
  • American Society for Testing and Materials. (2015). ASTM D4402: Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. ASTM.
  • American Society for Testing and Materials. (2019). ASTM D2872: Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test). ASTM.
  • American Society for Testing and Materials. (2020). ASTM D36M: Standard test method for softening point of bitumen (ring-and-ball apparatus). ASTM.
  • American Society for Testing and Materials. (2020). ASTM D5M: Standard test method for penetration of bituminous materials. ASTM.
  • American Society for Testing and Materials. (2020). ASTM D7405: Standard test method for multiple stress creep and recovery (MSCR) of asphalt binder using a dynamic shear rheometer. ASTM.
  • American Society for Testing and Materials. (2021). ASTM D6373: Standard specification for performance-graded asphalt binder. ASTM.
  • American Society for Testing and Materials. (2021). ASTM E1252: Standard practice for general techniques for obtaining infrared spectra for qualitative analysis. ASTM.
  • Bhat, F. S., & Mir, M. S. (2021). Rheological investigation of asphalt binder modified with nanosilica. International Journal of Pavement Research and Technology, 14(3), 276–287. https://doi.org/10.1007/s42947-020-0327-2
  • Carvalho, F. S. S., Lucena, A. E. F. L., Melo Neto, O. M., Costa, D. B., Mendonça, A. M. G. D., & Lima, R. K. B. (2022). Characterization of asphalt mixtures with addition of drill well gravel. Journal of Materials in Civil Engineering. https://doi.org/10.1061/JMCEE7.MTENG-14944
  • Carvalho, F. S. S., Lucena, A. E. F. L., Melo Neto, O. M., Porto, T. R., & Porto, T. M. R. (2021). Analysis of mechanical parameters of asphalt mixtures with addition of metal oxides. Matéria, 26. https://doi.org/10.1590/S1517-707620210003.13020
  • Chen, Z., Zhang, H., Zhu, C., & Zhao, B. (2015). Rheological examination of aging in bitumen with inorganic nanoparticles and organic expanded vermiculite. Construction and Building Materials, 101, 884–891. https://doi.org/10.1016/j.conbuildmat.2015.10.153
  • Cruz, G. K. A., Melo Neto, O. M., Arruda, S. M., Lucena, L. C. F. L., Ziegler, C. R., & Silva, G. C. B. (2022). Influence of particle size selection methods on asphalt mixtures produced with lateritic aggregates. Construction and Building Materials, 314. https://doi.org/10.1016/j.conbuildmat.2021.125201
  • D’angelo, J., Kluttz, R., Dongre, R., Stephens, K., & Zanzotto, L. (2007). Revision of the superpave high temperature binder specification: The multiple stress creep recovery test. Journal of the Association of Asphalt Paving Technologists, 76, 123–162.
  • Dehouche, N., Kaci, M., & Mouillet, V. (2016). The effects of mixing rate on morphology and physical properties of bitumen/organo-modified montmorillonite nanocomposites. Construction and Building Materials, 114, 76–86. https://doi.org/10.1016/j.conbuildmat.2016.03.151
  • Enieb, M., & Diab, A. (2017). Characteristics of asphalt binder and mixture containing nanosilica. International Journal of Pavement Research and Technology, 10(2), 148–157. https://doi.org/10.1016/j.ijprt.2016.11.009
  • Ezzat, H., El-Badawy, S., Gabr, A., Zaki, E. I., & Breakah, T. (2016). Evaluation of asphalt binders modified with nanoclay and nanosilica. Procedia Engineering, 143, 1260–1267. https://doi.org/10.1016/j.proeng.2016.06.119
  • Fini, E. H., Hajikarimi, P., Rahi, M., & Moghadas Nejad, F. (2016). Physiochemical, rheological, and oxidative aging characteristics of asphalt binder in the presence of mesoporous silica nanoparticles. Journal of Materials in Civil Engineering, 28. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001423
  • Gama, D. A. (2016). Effect of adding reactive, non-reactive polymers and polyphosphoric acid and their combinations on the properties of asphalt binders. Federal University of Campina Grande.
  • Golchin, B., Hamzah, M. O., Omranian, S. R., & Hasan, M. R. M. (2018). Effects of a surfactant-wax based warm additive on high temperature rheological properties of asphalt binders. Construction and Building Materials, 183, 395–407. https://doi.org/10.1016/j.conbuildmat.2018.06.099
  • Grasset, F., Saito, N., Li, D., Park, D., Sakaguchi, I., Ohashi, N., Haneda, H., Roisnel, T., Mornet, S., & Duguet, E. (2003). Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane. Journal of Alloys and Compounds, 360(1–2), 298–311. https://doi.org/10.1016/S0925-8388(03)00371-2
  • Guaglianoni, W. C., Garcia, A. P., Basegio, T. M., & Bergmann, C. P. (2015). Microstructural characterization and photocatalytic activity of zinc oxide nanostructured synthesized by combustion in solution. Tecnologia em Metalurgia, Materiais e Mineração, 12(2), 153–158. https://doi.org/10.4322/2176-1523.0866
  • Hamedi, G. H., Nejad, F. M., & Oveisi, K. (2016). Estimating the moisture damage of asphalt mixture modified with nano zinc oxide. Materials and Structures, 49(4), 1165–1174. https://doi.org/10.1617/s11527-015-0566-x
  • Hintz, C., & Bahia, H. (2013). Simplification of linear amplitude sweep test and specification parameter. Transportation Research, 2370, 10–16.
  • Hong-Liang, Z., Man-Man, S., Shi-Feng, Z., Young-Ping, Z., & Zeng-Ping, Z. (2016). High and low temperature properties of nano-particles/polymer modified asphalt. Construction and Building Materials, 114, 323–332. https://doi.org/10.1016/j.conbuildmat.2016.03.118
  • Karahancer, S. S., Kiristi, M., Terzi, S., Saltan, M., Oksuz, A. U., & Oksuz, L. (2014). Performance evaluation of nano-modified asphalt concrete. Construction and Building Materials, 71, 283–288. https://doi.org/10.1016/j.conbuildmat.2014.08.072
  • Karnati, S. R., Oldham, D., Fini, E. H., & Zhang, L. (2019). Surface functionalization of silica nanoparticles to enhance aging resistance of asphalt binder. Construction and Building Materials, 211, 1065–1072. https://doi.org/10.1016/j.conbuildmat.2019.03.257
  • Kataware, A. V., & Singh, D. (2017). A study on rutting susceptibility of asphalt binders at high stresses using MSCR test. Innovative Infrastructure Solutions, 2(1). https://doi.org/10.1007/s41062-017-0051-1
  • Li, R., Pei, J., & Sun, C. (2015). Effect of nano-ZnO with modified surface on properties of bitumen. Construction and Building Materials, 98, 656–661. https://doi.org/10.1016/j.conbuildmat.2015.08.141
  • Liu, H. Y., Zhang, H. L., Hao, P. W., & Zhu, C. Z. (2015). The effect of surface modifiers on ultraviolet aging properties of nano-zinc oxide modified bitumen. Petroleum Science and Technology, 33(1), 72–78. https://doi.org/10.1080/10916466.2014.948119
  • Marinho Filho, P. G. T. (2017). Rheological evaluation of asphalt binders modified with titanium dioxide nanoparticles. Federal University of Campina Grande.
  • Marinho Filho, P. G. T., Santos, A. T. R., Lucena, L. C., & Tenório, E. A. G. (2020). Rheological evaluation of asphalt binder modified with nanoparticles of titanium dioxide. International Journal of Civil Engineering, 18(10), 1195–1207. https://doi.org/10.1007/s40999-020-00525-4
  • Melo Neto, O. M., Mendonça, A. M. G. D., Rodrigues, J. K. G., Lima, R. K. B., Silvani, C., & Silva, I. M. (2022). Rheological study of asphalt binder modified by cotton and copaiba oils. Revista Cubana de Ingeniería, 13(1).
  • Melo Neto, O. M., Silva, I. M., Lucena, L. C. F. L., Lucena, L. F. L., Mendonça, A. M. G. D., & Lima, R. K. B. (2022a). Viability of recycled asphalt mixtures with soybean oil sludge fatty acid. Construction and Building Materials, 349. https://doi.org/10.1016/j.conbuildmat.2022.128728
  • Melo Neto, O. M., Silva, I. M., Lucena, L. C. F. L., Lucena, L. F. L., Mendonça, A. M. G. D., & Lima, R. K. B. (2022b). Physical and rheological study of asphalt binders with soybean oil sludge and soybean oil sludge fatty acid. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-022-01951-2
  • Mendonça, A. M. G. D., Melo Neto, O. M., Rodrigues, J. K. G., Dantas, I. S., Silva, I. M., Costa, D. B., & Lima, R. K. B. (2022a). Physical-rheological analysis of asphalt binders modified with refined cottonseed oil for use in warm asphalt mixtures. Revista Cubana de Ingeniería, 13(2), 1–10.
  • Mendonça, A. M. G. D., Melo Neto, O. M., Rodrigues, J. K. G., Lima, R. K. B., Silva, I. M., & Marques, A. T. (2022b). Characterisation of modified asphalt mixtures with lignin of pinus and eucalyptus woods. Australian Journal of Civil Engineering. https://doi.org/10.1080/14488353.2022.2089376
  • Mendonça, A. M. G. D., Melo Neto, O. M., Rodrigues, J. K. G., Silvani, C., & Lima, R. K. B. (2022c). Physicochemical and rheological effects of the incorporation of micronized polyethylene terephthalate in asphalt binder. Petroleum Science and Technology, 40(7), 822–838.
  • Moraes, T. M. R. P., Lucena, A. E. F. L., Melo Neto, O. M., Porto, T. R., Costa, D. B., & Carvalho, F. S. S. (2022). Effects of using carnauba wax as an additive to reduce mixing and compaction temperatures on the mechanical performance of asphalt mixtures. Matéria, 27. https://doi.org/10.1590/1517-7076-RMAT-2022-0192
  • Mortezaei, M., Shabani, S., & Mohammadian-Gerzaz, S. (2020). Assessing the effects of premixing on the rheological properties for three-phase asphalt binder nano-composite including clay and SBS. Construction and Building Materials, 231. https://doi.org/10.1016/j.conbuildmat.2019.117151
  • Mubaraki, M., Ali, S. I. A., Ismail, A., & Yusoff, N. I. M. (2016). Rheological evaluation of asphalt cements modified with ASA polymer and Al2O3 nanoparticles. Procedia Engineering, 143, 1276–1284. https://doi.org/10.1016/j.proeng.2016.06.135
  • Nascimento, T. C. B. (2015). Effect of thermo-oxidative and photo-oxidative aging on rheological properties of modified asphalt binders. University of São Paulo.
  • Nazari, H., Naderi, K., & Moghadas Nejad, F. (2018). Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles. Construction and Building Materials, 170, 591–602. https://doi.org/10.1016/j.conbuildmat.2018.03.107
  • Pamplona, T. F. (2013). Effect of polyphosphoric acid addition on asphalt binders from different sources. University of São Paulo.
  • Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2015). Introduction to spectroscopy. Cengage Learning.
  • Pechini, M. P. (1967). Metedology of preparing lead and alkaline: Earth, litanates and niobates and coating (Method using the same to for a capacitor, Us Patent 3.330.697).
  • Ramadhansyah, P. J., Masri, K. A., Mangi, S. A., Mohd Yusak, M. I., Mashros, N., Mohd Warid, M. N., Satar, M. K. I. M., & Mohd Haziman, W. I. (2020). Strength and porosity of porous concrete pavement containing nano black rice husk ash. Materials Science and Engineering, 712. https://doi.org/10.1088/1757-899X/712/1/012037
  • Razavi, S., & Kavussi, A. (2020). The role of nanomaterials in reducing moisture damage of asphalt mixes. Construction and Building Materials, 239. https://doi.org/10.1016/j.conbuildmat.2019.117827
  • Saltan, M., Terzi, S., & Karahancer, S. (2019). Mechanical behavior of bitumen and hotmix asphalt modified with zinc oxide nanoparticle. Journal of Materials in Civil Engineering, 31(3). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002621
  • Scherrer, P. (1918). Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Gottingen. Mathematisch-Physikalische Klasse, 2, 98–100.
  • Shen, C., Li, R., Pei, J., Cai, J., Liu, T., & Li, Y. (2019). Preparation and the effect of surface-functionalized calcium carbonate nanoparticles on asphalt binder. Applied Sciences, 10. https://doi.org/10.3390/app10010091
  • Silva, C. C. V., Melo Neto, O. M., Rodrigues, J. K. G., Mendonça, A. M. G. D., Arruda, S. M., & Lima, R. K. B. (2022). Evaluation of the rheological effect of asphalt binder modification using linum usitatissimum oil. Matéria, 27. https://doi.org/10.1590/1517-7076-RMAT-2022-0138
  • Sousa Neto, V. F. (2019). Rheological evaluation of asphalt binder modified with zinc oxide nanoparticles. University Federal of Campina Grande.
  • Sun, L., Xin, X., & Ren, J. (2017). Inorganic nanoparticle-modified asphalt with enhanced performance at high temperature. Journal of Materials in Civil Engineering, 29. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001750
  • Tanzadeh, J., Tanzadeh, R., Nazari, H., & Kamvar, N. (2017). Fatigue evaluation of hot mix asphalt (HMA) mixtures modified by optimum percent of TiO2 nanoparticles. Advanced Engineering Forum, 24, 55–62. https://doi.org/10.4028/www.scientific.net/AEF.24.55
  • Wang, W., Wang, L., Xiong, H., & Luo, R. (2019). A review and perspective for research on moisture damage in asphalt pavement induced by dynamic pore water pressure. Construction and Building Materials, 204, 631–642. https://doi.org/10.1016/j.conbuildmat.2019.01.167
  • Xiao, F., Amirkhanian, A. N., & Amirkhanian, S. N. (2011). Influence of carbon nanoparticles on the rheological characteristics of short-term aged asphalt binders. Journal of Materials in Civil Engineering, 23(4), 423–431. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000184
  • Yin, Y., Huang, W., Lv, J., Ma, X., & Yan, J. (2018). Unified construction of dynamic rheological master curve of asphalts and asphalt mixtures. International Journal of Civil Engineering, 16(9), 1057–1067. https://doi.org/10.1007/s40999-017-0256-x
  • Yusoff, N. I. M., Breem, A. A. S., Alattug, H. N., Hamim, A., & Ahmad, J. (2014). The effects of moisture susceptibility and ageing conditions on nano-silica/polymer-modified asphalt mixtures. Construction and Building Materials, 72, 139–147. https://doi.org/10.1016/j.conbuildmat.2014.09.014
  • Zhang, D., Chen, Z., Zhang, H., & Wei, C. (2018). Rheological and anti-aging performance of SBS modified asphalt binders with different multi-dimensional nanomaterials. Construction and Building Materials, 188, 409–416. https://doi.org/10.1016/j.conbuildmat.2018.08.136
  • Zhang, H., & Zhang, D. (2015). Effect of different inorganic nanoparticles on physical and ultraviolet aging properties of bitumen. Journal of Materials in Civil Engineering, 27. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001321
  • Zhang, H., Zhu, C., & Kuang, D. (2015). Physical, rheological and aging properties of bitumen containing organic expanded vermiculite and nano-zinc oxide. Journal of Materials in Civil Engineering, 28. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001499
  • Zhang, H., Zhu, C., Yu, J., Shi, C., & Zhang, D. (2015). Influence of surface modification on physical and ultraviolet aging resistance of bitumen containing inorganic nanoparticles. Construction and Building Materials, 98, 735–740. https://doi.org/10.1016/j.conbuildmat.2015.08.138
  • Zhu, C., Zhang, H., Shi, C., & Li, S. (2017). Effect of nano-zinc oxide and organic expanded vermiculite on rheological properties of different bitumens before and after aging. Construction and Building Materials, 146, 30–37. https://doi.org/10.1016/j.conbuildmat.2017.04.062
  • Ziari, H., Amini, A., Moniri, A., & Habibpour, M. (2021). Using the GMDH and ANFIS methods for predicting the crack resistance of fibre reinforced high RAP asphalt mixtures. Road Materials and Pavement Design, 22(10), 2248–2266. https://doi.org/10.1080/14680629.2020.1748693

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.