253
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Interface contact properties in asphalt pavement using 3D laser scanning technology

, , ORCID Icon &
Pages 1249-1269 | Received 13 Mar 2023, Accepted 21 Sep 2023, Published online: 13 Oct 2023

References

  • Ai, C., He, H., Zhang, X., Meng, H., & Ren, D. (2022). Investigation of inter-layer bonding property in asphalt pavement based on 3D morphology of reconstructed interface. Construction and Building Materials, 317` https://doi.org/10.1016/j.conbuildmat.2021.125983
  • Ai, C., Rahman, A., Song, J., Gao, X., & Lu, Y. (2017). Characterization of interface bonding in asphalt pavement layers based on direct shear tests with vertical loading. Journal of Materials in Civil Engineering, 29(9). https://doi.org/10.1061/(asce)mt.1943-5533.0001952
  • Alae, M., Zhao, Y., Zarei, S., Fu, G., & Cao, D. (2018). Effects of layer interface conditions on top-down fatigue cracking of asphalt pavements. International Journal of Pavement Engineering, 21(3), 280–288. https://doi.org/10.1080/10298436.2018.1461870
  • Al-Hosainat, A., Nazzal, M. D., Talha, S. A., Kim, S.-S., Abbas, A., & Mohammad, L. (2022). A comprehensive laboratory evaluation of the factors affecting the micro-surfacing interlayer bond strength. Construction and Building Materials, 323. https://doi.org/10.1016/j.conbuildmat.2022.126538
  • Apostolidis, P., Liu, X., Erkens, S., & Scarpas, A. (2020). Use of epoxy asphalt as surfacing and tack coat material for roadway pavements. Construction and Building Materials, 250. https://doi.org/10.1016/j.conbuildmat.2020.118936
  • Biglari, M., Asgharzadeh, S. M., & Sharif Tehrani, S. (2019). Evaluation of factors affecting tack coat bond strength. Canadian Journal of Civil Engineering, 46(4), 270–277. https://doi.org/10.1139/cjce-2018-0290
  • Canestrari, F., Cardone, F., Gaudenzi, E., Chiola, D., Gasbarro, N., & Ferrotti, G. (2022). Interlayer bonding characterization of interfaces reinforced with geocomposites in field applications. Geotextiles and Geomembranes, 50(1), 154–162. https://doi.org/10.1016/j.geotexmem.2021.09.010
  • China, C. o. (2011). Standard test methods of bitumen and bituminous mixtures for highway engineering (Vol. JTG E, 20–2011. Highway Research Institute Ministry of Transport.
  • Deng, Q., Zhan, Y., Liu, C., Qiu, Y., & Zhang, A. (2021). Multiscale power spectrum analysis of 3D surface texture for prediction of asphalt pavement friction. Construction and Building Materials, 293. https://doi.org/10.1016/j.conbuildmat.2021.123506
  • Du, Y., Weng, Z., Li, F., Ablat, G., Wu, D., & Liu, C. (2020). A novel approach for pavement texture characterisation using 2D-wavelet decomposition. International Journal of Pavement Engineering, 23(6), 1851–1866. https://doi.org/10.1080/10298436.2020.1825712
  • Edmondson, V., Woodward, J., Lim, M., Kane, M., Martin, J., & Shyha, I. (2019). Improved non-contact 3D field and processing techniques to achieve macrotexture characterisation of pavements. Construction and Building Materials, 227. https://doi.org/10.1016/j.conbuildmat.2019.116693
  • Ferrotti, G., Canestrari, F., Virgili, A., & Grilli, A. (2011). A strategic laboratory approach for the performance investigation of geogrids in flexible pavements. Construction and Building Materials, 25(5), 2343–2348. https://doi.org/10.1016/j.conbuildmat.2010.11.032
  • Gallu, R., Méchin, F., Gérard, J.-F., & Dalmas, F. (2022). Influence of the chain extender of a segmented polyurethane on the properties of polyurethane-modified asphalt blends. Construction and Building Materials, 328. https://doi.org/10.1016/j.conbuildmat.2022.127061
  • Hu, L., Yun, D., Liu, Z., Du, S., Zhang, Z., & Bao, Y. (2016). Effect of three-dimensional macrotexture characteristics on dynamic frictional coefficient of asphalt pavement surface. Construction and Building Materials, 126, 720–729. https://doi.org/10.1016/j.conbuildmat.2016.09.088
  • Jaskula, P., & Rys, D. (2017). Effect of interlayer bonding quality of asphalt layers on pavement performance. IOP Conference Series: Materials Science and Engineering, 236. https://doi.org/10.1088/1757-899x/236/1/012005
  • Jerónimo, P., Resende, R., & Fortunato, E. (2020). An assessment of contact and laser-based scanning of rock particles for railway ballast. Transportation Geotechnics, 22. https://doi.org/10.1016/j.trgeo.2019.100302
  • Jia, W., Hu, M., Liu, Z., Li, T., Chen, S., & Gao, J. (2021). Experimental study on interlayer mechanical properties of semi-rigid base asphalt pavement using interlayer treatment method. IOP Conference Series: Earth and Environmental Science, 719(3). https://doi.org/10.1088/1755-1315/719/3/032070
  • Jia, X., & Huang, B. (2022). Characterization of shear resistance of interlayer between concrete bridge deck and asphalt concrete overlay utilizing inclination shear test. Journal of Materials in Civil Engineering, 34(2). https://doi.org/10.1061/(asce)mt.1943-5533.0004051
  • Kanafi, M., Kuosmanen, M., Pellinen, A., & Tuononen, T. K., & J, A. (2014). Macro- and micro-texture evolution of road pavements and correlation with friction. International Journal of Pavement Engineering, 16(2), 168–179. https://doi.org/10.1080/10298436.2014.937715
  • Khweir, K., & Fordyce, D. (2003). Influence of layer bonding on the prediction of pavement life. Proceedings of the Institution of Civil Engineers-Transport, 156(2), 73–83. https://doi.org/10.1680/tran.2003.156.2.73
  • Le, M.-T., Nguyen, Q.-H., & Nguyen, M. L. (2020). Numerical and experimental investigations of asphalt pavement behaviour. Taking Into Account Interface Bonding Conditions. Infrastructures, 5(2). https://doi.org/10.3390/infrastructures5020021
  • Li, F., Ablat, G., Zhou, S., Liu, Y., Bi, Y., Weng, Z., & Du, Y. (2021a). 2D-wavelet based micro and macro texture analysis for asphalt pavement under snow or ice condition. Journal of Infrastructure Preservation and Resilience, 2(1). https://doi.org/10.1186/s43065-021-00029-y
  • Li, L., Guo, M., Zeng, C., & Li, L. (2021b). Influence of the chemical composition of asphalt and the 3D morphology of the aggregate on contact surface adhesion. Advances in Civil Engineering, 2021, 1–16. https://doi.org/10.1155/2021/8870295
  • Liu, C., Li, J., Gao, J., Yuan, D., Gao, Z., & Chen, Z. (2021). Three-dimensional texture measurement using deep learning and multi-view pavement images. Measurement, 172). https://doi.org/10.1016/j.measurement.2020.108828
  • Liu, H., Sun, Z., Li, W., Huyan, J., Guo, M., & Hao, X. (2020). Evaluating angularity of coarse aggregates using the virtual cutting method based on 3D point cloud images. IEEE Access, 8, 143241–143255. https://doi.org/10.1109/access.2020.3013901
  • Najm, O., El-Hassan, H., & El-Dieb, A. (2022). Optimization of alkali-activated ladle slag composites mix design using taguchi-based TOPSIS method. Construction and Building Materials, 327. https://doi.org/10.1016/j.conbuildmat.2022.126946
  • Nian, T., Ge, J., Li, P., Guo, R., & Liu, W. (2020). Influence of multiple factors on the shear fatigue resistance of asphalt pavement interlayer adhesive materials. Journal of Materials in Civil Engineering, 32, 9. https://doi.org/10.1061/(asce)mt.1943-5533.0003330
  • Noory, A., Moghadas Nejad, F., & Khodaii, A. (2017). Evaluation of shear bonding and reflective crack propagation in a geocomposite reinforced overlay. Geosynthetics International, 24(4), 343–361. https://doi.org/10.1680/jgein.17.00007
  • Oliver, J., Khoo, K. Y., & Waldron, K. (2012). The effect of SBS morphology on field prformance and test results. Road Materials and Pavement Design, 13(1), 104–127. https://doi.org/10.1080/14680629.2011.644113
  • Ragni, D., Ferrotti, G., Petit, C., & Canestrari, F. (2020). Analysis of shear-torque fatigue test for bituminous pavement interlayers. Construction and Building Materials, 254. https://doi.org/10.1016/j.conbuildmat.2020.119309
  • Ragni, D., Sudarsanan, N., Canestrari, F., & Kim, Y. R. (2021). Investigation into fatigue life of interface bond between asphalt concrete layers. International Journal of Pavement Engineering, 23(10), 3371–3385. https://doi.org/10.1080/10298436.2021.1894420
  • Rahman, A., Ai, C., Xin, C., Gao, X., & Lu, Y. (2016). State-of-the-art review of interface bond testing devices for pavement layers: Toward the standardization procedure. Journal of Adhesion Science and Technology, 31(2), 109–126. https://doi.org/10.1080/01694243.2016.1205240
  • Shafabakhsh, G., & Ahmadi, S. (2019). Reflective cracking reduction by a comparison between modifying asphalt overlay and sand asphalt interlayer: An experimental evaluation. International Journal of Pavement Engineering, 22(2), 192–200. https://doi.org/10.1080/10298436.2019.1593410
  • Shan L, J. Z., Meng, Z., Zhuang, M., Xing-ye, Z., & Jian-kai, W. (2020). Experimental research on interlayer strain transfer of semirigid asphalt pavement and influencing factors. Journal of Highway and Transportation Research and Development (English Edition, 14(1), 18–24. https://doi.org/10.1061/JHTRCQ.0000713
  • Singh, A. K., & Sahoo, J. P. (2020). Analysis and design of two layered flexible pavement systems: A new mechanistic approach. Computers and Geotechnics, 117. https://doi.org/10.1016/j.compgeo.2019.103238
  • Solatiyan, E., Bueche, N., & Carter, A. (2021a). Experimental measurements of interfacial mechanical properties between rehabilitated bituminous layers using innovative approaches. Journal of Materials in Civil Engineering, 33(5). https://doi.org/10.1061/(asce)mt.1943-5533.0003697
  • Solatiyan, E., Bueche, N., & Carter, A. (2021b). Laboratory evaluation of interfacial mechanical properties in geogrid-reinforced bituminous layers. Geotextiles and Geomembranes, 49(4), 895–909. https://doi.org/10.1016/j.geotexmem.2020.12.014
  • Somé, S. C.,: Feeser, A., Jaoua, M., & Le Corre, T. (2020). Mechanical characterization of asphalt mixes inter-layer bonding based on reptation theory. Construction and Building Materials, 242. https://doi.org/10.1016/j.conbuildmat.2020.118063
  • Song, W., Shu, X., Huang, B., & Woods, M. (2017). Influence of interface characteristics on the shear performance between open-graded friction course and underlying layer. Journal of Materials in Civil Engineering, 29, 8. https://doi.org/10.1061/(asce)mt.1943-5533.0001907
  • Song, W., Shu, X., Huang, B., & Woods, M. (2018). Effects of asphalt mixture type on asphalt pavement interlayer shear properties. Journal of transportation engineering. Part B: Pavements, 144(2). https://doi.org/10.1061/jpeodx.0000056
  • Tashman, L., Nam, K., Papagiannakis, T., Willoughby, K., Pierce, L., & Baker, T. (2008). Evaluation of construction practices that influence the bond strength at the interface between pavement layers. Journal of Performance of Constructed Facilities, 22(3), 154–161. https://doi.org/10.1061/(Asce)0887-3828(2008)22:3(154)
  • Vaitkus, A., Cygas, D., Laurinavicius, A., Vorobjovas, V., & Kleiziene, R. (2012). Research of asphalt layers bonding in Lithuanian pavement. Road and Rail Infrastructure Ii, 357–364.
  • Vaitkus, A., Žilionienė, D., Paulauskaitė, S., Tuminienė, F., & Žiliūtė, L. (2011). Research and assessment of asphalt layers bonding. The Baltic Journal of Road and Bridge Engineering, 6(3), 210–218. https://doi.org/10.3846/bjrbe.2011.27
  • Wang, H., Ma, J., Yang, H., Sun, F., Wei, Y., & Wang, L. (2021). Development of three-dimensional pavement texture measurement technique using surface structured light projection. Measurement, 185. https://doi.org/10.1016/j.measurement.2021.110003
  • Wang, X., & Ma, X. (2020). Responses of semi-rigid base asphalt pavement with interlayer contact bonding model. Advances in Civil Engineering, 2020, 1–13. https://doi.org/10.1155/2020/8841139
  • Xin, Q., Qian, Z., Miao, Y., Meng, L., & Wang, L. (2017). Three-dimensional characterisation of asphalt pavement macrotexture using laser scanner and micro element. Road Materials and Pavement Design, 18(sup3), 190–199. https://doi.org/10.1080/14680629.2017.1329874
  • Yang, K., & Li, R. (2021). Characterization of bonding property in asphalt pavement interlayer: A review. Journal of Traffic and Transportation Engineering (English Edition, 8(3), 374–387. https://doi.org/10.1016/j.jtte.2020.10.005
  • You, L., Yan, K., Man, J., & Liu, N. (2020). Anisotropy of multi-layered structure with sliding and bonded interlayer conditions. Frontiers of Structural and Civil Engineering, 14(3), 632–645. https://doi.org/10.1007/s11709-020-0617-4
  • Zhang, S., Li, R., & Pei, J. (2019). Evaluation methods and indexes of morphological characteristics of coarse aggregates for road materials: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition, 6(3), 256–272. https://doi.org/10.1016/j.jtte.2019.01.003
  • Zhao, H., Cao, J., & Zheng, Y. (2017). Investigation of the interface bonding between concrete slab and asphalt overlay. Road Materials and Pavement Design, 18(sup3), 109–118. https://doi.org/10.1080/14680629.2017.1329866

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.