1,343
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

The effect of airflow guiding components on effective ventilation rates in single-sided ventilation applications

ORCID Icon, &
Pages 377-389 | Received 06 Mar 2023, Accepted 11 Mar 2023, Published online: 23 Apr 2023

References

  • Argiriou, A. A., Balaras, C. A., & Lykoudis, S. P. (2002). Single-sided ventilation of buildings through shaded large openings. Energy, 27(2), 93–115. https://doi.org/10.1016/S0360-5442(01)00058-5
  • Attia, S., Levinson, R., Ndongo, E., Holzer, P., Berk Kazanci, O., Homaei, S., Zhang, C., Olesen, B. W., Qi, D., Hamdy, M., & Heiselberg, P. (2021). Resilient cooling of buildings to protect against heat waves and power outages: Key concepts and definition. Energy and Buildings, 239, 110869. https://doi.org/10.1016/j.enbuild.2021.110869
  • Blocken, B. (2015). Computational fluid dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Building and Environment, Elsevier, 91, 219–245. https://doi.org/10.1016/j.buildenv.2015.02.015
  • Caciolo, M., Stabat, P., & Marchio, D. (2011). Full scale experimental study of single-sided ventilation: Analysis of stack and wind effects. Energy and Buildings, 43(7), 1765–1773. https://doi.org/10.1016/j.enbuild.2011.03.019
  • Caciolo, M., Stabat, P., & Marchio, D. (2012). Numerical simulation of single-sided ventilation using RANS and LES and comparison with full-scale experiments. Building and Environment, 50, 202–213. https://doi.org/10.1016/j.buildenv.2011.10.017
  • el Telbany, M. M. M., Mokhtarzadeh-Dehghan, M. R., & Reynolds, A. J. (1985). Single-sided ventilation–Part I. The flow between a cavity and external air stream. Building and Environment, 20(1), 15–24. https://doi.org/10.1016/0360-1323(85)90026-5
  • Evola, G., & Popov, V. (2006). Computational analysis of wind driven natural ventilation in buildings. Energy and Buildings, 38(5), 491–501. https://doi.org/10.1016/j.enbuild.2005.08.008
  • Franke, J., Hellsten, A., Schlünzen, H., & Carissimo, B. (2007). Best practice guideline for the CFD simulation of flows in the urban environment. COST Action, 732, 1–52.
  • Goethals, K., Couckuyt, I., Dhaene, T., & Janssens, A. (2012). Sensitivity of night cooling performance to room/system design: Surrogate models based on CFD. Building and Environment, 58, 23–36. https://doi.org/10.1016/j.buildenv.2012.06.015
  • Heiselberg, P., Bjørn, E., & Nielsen, P. v (2002). Impact of open windows on room air flow and thermal comfort. International Journal of Ventilation, Informa UK Limited, Vol, 1(2), 91–100. https://doi.org/10.1080/14733315.2002.11683625
  • Jiang, Y., Alexander, D., Jenkins, H., Arthur, R., & Chen, Q. (2003). Natural ventilation in buildings: Measurement in a wind tunnel and numerical simulation with large-eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics, 91(3), 331–353. https://doi.org/10.1016/S0167-6105(02)00380-X
  • Kato, S., Kono, R., Hasama, T., Ooka, R., & Takahashi, T. (2006). A wind tunnel experimental analysis of the ventilation characteristics of a room with single-sided opening in uniform flow. International Journal of Ventilation, VEETECH Ltd, 5(1), 171–178. https://doi.org/10.1080/14733315.2006.11683734
  • Kosutova, K., van Hooff, T., Vanderwel, C., Blocken, B., & Hensen, J. (2019). Cross-ventilation in a generic isolated building equipped with louvers: Wind-tunnel experiments and CFD simulations. pp. Building and Environment, 154, 263–280. nooctober 2018 https://doi.org/10.1016/j.buildenv.2019.03.019
  • Larsen, T. S., & Heiselberg, P. (2008). Single-sided natural ventilation driven by wind pressure and temperature difference. Energy and Buildings, Vol, 40(6), 1031–1040. https://doi.org/10.1016/j.enbuild.2006.07.012
  • Martinuzzi, R., & Tropea, C. (1993). The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow (data bank contribution). Journal of Fluids Engineering, 115(1), 85–92. https://doi.org/10.1115/1.2910118
  • Mohamed, M. F., Behnia, M., King, S., & Prasad, D. (2011). The potential of natural ventilation in single-sided ventilated apartment to improve indoor thermal comfort and air quality. ASME 2011 5th International Conference on Energy Sustainability, ES 2011, pp. 71––78.
  • Najafi Ziarani, N. J.,Cook, M.,Freidooni, F., &D. O'Sullivan, P. (2023). The role of near-façade flow in wind-dominant single-sided natural ventilation for an isolated three-storey building: An LES study. Building and Environment, 235. 110210 https://doi.org/10.1016/j.buildenv.2023.110230
  • Omrani, S., Garcia-Hansen, V., Capra, B. R., & Drogemuller, R. (2017). On the effect of provision of balconies on natural ventilation and thermal comfort in high-rise residential buildings. Building and Environment, 123, 504–516. https://doi.org/10.1016/j.buildenv.2017.07.016
  • O'Sullivan, P. D., & Kolokotroni, M. (2017). A field study of wind dominant single sided ventilation through a narrow slotted architectural louvre system. Energy and Buildings, 138, 733–747. https://doi.org/10.1016/j.enbuild.2016.11.025
  • Park, J., Choi, J. I., & Rhee, G. H. (2016). Enhanced single-sided ventilation with overhang in buildings. Energies, 9(3), 122. https://doi.org/10.3390/en9030122
  • Pokhrel, M. K., Anderson, T. N., & Lie, T. T. (2019). Maintaining thermal comfort of a single-sided naturally ventilated model house by intelligently actuating windows. Proceedings of the 24th CAADRIA Conference - Volume1, Victoria University of Wellington. Wellington, New Zealand, 15–18 Aprl 2019. (pp. 705–714). https://doi.org/10.52842/conf.caadria.2019.1.705
  • Pope, S. B. (2000). Turublent flows (12 ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511840531
  • Richards, P. J., & Hoxey, R. P. (1993). Appropriate boundary conditions for computational wind engineering models using the k-ϵ turbulence model. Journal of Wind Engineering and Industrial Aerodynamics, 46-47(C), 145–153. https://doi.org/10.1016/0167-6105(93)90124-7
  • Roache, P. J. (1997). Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 29(1), 123–160. https://doi.org/10.1146/annurev.fluid.29.1.123
  • Sacht, H., Bragança, L., Almeida, M., & Caram, R. (2016). Study of natural ventilation in wind tunnels and influence of the position of ventilation modules and types of grids on a modular façade system. Energy Procedia, Vol, 96, 953–964. Elsevier Ltdhttps://doi.org/10.1016/j.egypro.2016.09.173
  • Sandberg, M. (1992). Ventilation effectiveness and purging flow rate–a review. International symposium on room air convection and ventilation effectiveness.
  • Schulze, T., Gürlich, D., & Eicker, U. (2018). Performance assessment of controlled natural ventilation for air quality control and passive cooling in existing and new office type buildings. Energy and Buildings, 172, 265–278. https://doi.org/10.1016/j.enbuild.2018.03.023
  • Wang, H., & Chen, Q. (. (2015). Modeling of the impact of different window types on single-sided natural ventilation. Energy Procedia. 78, 1549–1555. https://doi.org/10.1016/j.egypro.2015.11.201
  • Wang, J., Wang, S., Zhang, T., & Battaglia, F. (2017). Assessment of single-sided natural ventilation driven by buoyancy forces through variable window configurations. Energy and Buildings, Elsevier Ltd, 139, 762–779. https://doi.org/10.1016/j.enbuild.2017.01.070
  • Wei, Y., Guo-Qiang, Z., Xiao, W., Jing, L., & San-Xian, X. (2010). Potential model for single-sided naturally ventilated buildings in China. Solar Energy, 84(9), 1595–1600. https://doi.org/10.1016/j.solener.2010.06.011
  • Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510–1520. https://doi.org/10.1063/1.858424
  • Zheng, J. W., Tao, Q. H., & Li, L. (2019). Study of influence of shading louvers on wind characteristics around buildings under different wind directions. IOP Conference Series: Earth and Environmental Science, 238, 012031. https://doi.org/10.1088/1755-1315/238/1/012031