3,441
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Trade-offs, synergies and acceptability of climate smart agricultural practices by smallholder farmers in rural Ghana

ORCID Icon, , , &
Article: 2193439 | Received 28 Jul 2022, Accepted 16 Mar 2023, Published online: 04 Apr 2023

References

  • Abegunde, V. O., Sibanda, M., & Obi, A. (2019). The dynamics of climate change adaptation in sub-Saharan Africa: A review of climate-smart agriculture among small-scale farmers. Climate, 7(11), 132. https://doi.org/10.3390/cli7110132
  • Abera, K., Crespo, O., Seid, J., & Mequanent, F. (2018). Simulating the impact of climate change on maize production in Ethiopia, East Africa. Environmental Systems Research, 7(1), 1–12. https://doi.org/10.1186/s40068-017-0104-7
  • Adolph, B., Allen, M., Beyuo, E., Banuoku, D., Barrett, S., Bourgou, T., Bwanausi, N., Dakyaga, F., Derbile, E. K., Gubbels, P., Hié, B., Kachamba, C., Naazie, G. K., Niber, E. B., Nyirengo, I., Tampulu, S. F., & Zongo, A. F. (2021). Supporting smallholders’ decision making: Managing trade-offs and synergies for sustainable agricultural intensification. International Journal of Agricultural Sustainability, 19(5–6), 456–473. https://doi.org/10.1080/14735903.2020.1786947
  • African Development Bank. (2019). Feed Africa.
  • Agula, C., Akudugu, M. A., Dittoh, S., & Mabe, F. N. (2018). Promoting sustainable agriculture in Africa through ecosystem-based farm management practices: Evidence from Ghana. Agriculture & Food Security, 7(1), 1–11. https://doi.org/10.1186/s40066-018-0157-5
  • Akinyi, D. P., Karanja Ng’ang’a, S., & Girvetz, E. H. (2021). Trade-offs and synergies of climate change adaptation strategies among smallholder farmers in sub-Saharan Africa: A systematic review. Regional Sustainability, 2(2), 130–143. https://doi.org/10.1016/j.regsus.2021.05.002
  • Alagidede, P., Adu, G., & Frimpong, P. B. (2014). The effect of climate change on economic growth (Working Paper 17/2014). United Nations University.
  • Alkhtib, A., Wamatu, J., Kassie, G. T., & Rischkowsky, B. (2017). Analysis of crop residue use in small holder mixed farms in Ethiopia. Renewable Agriculture and Food Systems, 32(5), 454–462. https://doi.org/10.1017/S1742170516000399
  • Amisigo, B. A., McCluskey, A., & Swanson, R. (2015). Modeling impact of climate change on water resources and agriculture demand in the Volta Basin and other basin systems in Ghana. Sustainability, 7(6), 6957–6975. https://doi.org/10.3390/su7066957
  • Amorim, H. C., Ashworth, A. J., Brye, K. R., Wienhold, B. J., Savin, M. C., Owens, P. R., & Silva, S. H. (2021). Soil quality indices as affected by long-term burning, irrigation, tillage, and fertility management. Soil Science Society of America Journal, 85(2), 379–395. https://doi.org/10.1002/saj2.20188
  • Anderson, W. K., & Siddique, K. H. M. (2015). The role and value of crop residues in dryland agriculture. Indian Journal of Agronomy, 60(3), 332–340.
  • Andrieu, N., Sogoba, B., Zougmore, R., Howland, F., Samake, O., Bonilla-Findji, O., Lizarazo, M., Nowak, A., Dembele, C., & Corner-Dolloff, C. (2017). Prioritizing investments for climate-smart agriculture: Lessons learned from Mali. Agricultural Systems, 154, 13–24. https://doi.org/10.1016/j.agsy.2017.02.008
  • Aniah, P., Kaunza-Nu-Dem, M. K., Abindaw, B. A., & Millar, D. (2016). Characterizing and explaining smallholder households’ views and understanding of climate change in the Bongo district of Ghana. Earth Sciences, 5(2), 26. https://doi.org/10.11648/j.earth.20160502.12
  • Antwi-Agyei, P., Abalo, E. M., Dougill, A. J., & Baffour-Ata, F. (2022). Motivations, enablers and barriers to the adoption of climate-smart agricultural practices by smallholder farmers: Evidence from the transitional and savannah agroecological zones of Ghana. Regional Sustainability, 2(4), 375–386. https://doi.org/10.1016/j.regsus.2022.01.005
  • Antwi-Agyei, P., Amanor, K., Hogarh, J. N., & Dougill, A. J. (2021). Predictors of access to and willingness to pay for climate information services in north-eastern Ghana: A gendered perspective. Environmental Development, 37, Article 100580. https://doi.org/10.1016/j.envdev.2020.100580
  • Antwi-Agyei, P., Dougill, A. J., & Stringer, L. C. (2015). Barriers to climate change adaptation: Evidence from northeast Ghana in the context of a systematic literature review. Climate and Development, 7(4), 297–309. https://doi.org/10.1080/17565529.2014.951013
  • Antwi-Agyei, P., Dougill, A. J., Stringer, L. C., & Codjoe, S. N. A. (2018). Adaptation opportunities and maladaptive outcomes in climate vulnerability hotspots of northern Ghana. Climate Risk Management, 19, 83–93. https://doi.org/10.1016/j.crm.2017.11.003
  • Antwi-Agyei, P., Fraser, E. D., Dougill, A. J., Stringer, L. C., & Simelton, E. (2012). Mapping the vulnerability of crop production to drought in Ghana using rainfall, yield and socioeconomic data. Applied Geography, 32(2), 324–334. https://doi.org/10.1016/j.apgeog.2011.06.010
  • Antwi-Agyei, P., & Nyantakyi-Frimpong, H. (2021). Evidence of climate change coping and adaptation practices by smallholder farmers in northern Ghana. Sustainability, 13(3), 1308. https://doi.org/10.3390/su13031308
  • Anuga, S. W., Gordon, C., Boon, E., & Surugu, J. M. I. (2019). Determinants of climate smart agriculture (CSA) adoption among smallholder food crop farmers in the Techiman Municipality, Ghana. Ghana Journal of Geography, 11(1), 124–139. https://doi.org/10.4314/gjg.v11i1.8
  • Asare-Nuamah, P., Dick-Sagoe, C., & Ayivor, R. (2021). Farmers’ maladaptation: Eroding sustainable development, rebounding and shifting vulnerability in smallholder agriculture system. Environmental Development, 40, Article 100680. https://doi.org/10.1016/j.envdev.2021.100680
  • Ayanlade, A., & Radeny, M. (2020). COVID-19 and food security in sub-Saharan Africa: Implications of lockdown during agricultural planting seasons. NPJ Science of Food, 4(1), 1–6. https://doi.org/10.1038/s41538-020-00073-0
  • Barasa, P. M., Botai, C. M., Botai, J. O., & Mabhaudhi, T. (2021). A review of climate-smart agriculture research and applications in Africa. Agronomy, 11(6), 1255. https://doi.org/10.3390/agronomy11061255
  • Basche, A. D., Kaspar, T. C., Archontoulis, S. V., Jaynes, D. B., Sauer, T. J., Parkin, T. B., & Miguez, F. E. (2016). Soil water improvements with the long-term use of a winter rye cover crop. Agricultural Water Management, 172, 40–50. https://doi.org/10.1016/j.agwat.2016.04.006
  • Beedy, T. L., Nyamadzawo, G., Luedeling, E., Kim, D. G., Place, F., & Hadgu, K. (2014). Agroforestry for small landholders of eastern and southern Africa. In: Lal R, Stewart BA (eds) Soil management of smallholder agriculture. CRC Press, Taylor and Francis Group, Boca Raton (pp. 238–259).
  • Berry, P. M., Brown, S., Chen, M., Kontogianni, A., Rowlands, O., Simpson, G., & Skourtos, M. (2015). Cross-sectoral interactions of adaptation and mitigation measures. Climatic Change, 128(3), 381–393. https://doi.org/10.1007/s10584-014-1214-0
  • Bessah, E., Bala, A., Agodzo, S. K., Okhimamhe, A. A., Boakye, E. A., & Ibrahim, S. U. (2019). The impact of crop farmers’ decisions on future land use, land cover changes in Kintampo North Municipality of Ghana. International Journal of Climate Change Strategies and Management. https://doi.org/10.1108/IJCCSM-05-2017-0114
  • Blaser, W. J., Oppong, J., Hart, S. P., Landolt, J., Yeboah, E., & Six, J. (2018). Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nature Sustainability, 1(5), 234–239. https://doi.org/10.1038/s41893-018-0062-8
  • Bonke, V., & Musshoff, O. (2020). Understanding German farmer’s intention to adopt mixed cropping using the theory of planned behavior. Agronomy for Sustainable Development, 40(6), 1–14. https://doi.org/10.1007/s13593-020-00653-0
  • Borychowski, M., Sapa, A., Czyżewski, B., Stępień, S., & Poczta-Wajda, A. (2022). Interactions between food and nutrition security and the socio-economic and environmental dimensions of sustainability in small-scale farms: Evidence from a simultaneous confirmatory factor analysis in Poland. International Journal of Agricultural Sustainability, 20(5), 998–1014. https://doi.org/10.1080/14735903.2022.2041230
  • Bryan, E., Ringler, C., Okoba, B., Koo, J., Herrero, M., & Silvestri, S. (2013). Can agriculture support climate change adaptation, greenhouse gas mitigation and rural livelihoods? Insights from Kenya. Climatic Change, 118(2), 151–165. https://doi.org/10.1007/s10584-012-0640-0
  • Cavalli, E., Lange, A., Cavalli, C., & Behling, M. (2018). Decomposition and release of nutrients from crop residues on soybean-maize cropping systems. Brazilian Journal of Agrarian Sciences, 13(2), 1–8. https://doi.org/10.5039/agraria.v13i2a5527
  • Chataway, R. G., Cooper, J. E., Orr, W. N., & Cowan, R. T. (2011). The role of tillage, fertiliser and forage species in sustaining dairying based on crops in southern Queensland 2. Double-crop and summer sole-crop systems. Animal Production Science, 51(10), 904–919. https://doi.org/10.1071/AN11032
  • Chinseu, E., Stringer, L., & Dougill, A. (2018). Policy integration and coherence for conservation agriculture initiatives in Malawi. Sustainable Agriculture Research, 7(4), 51–62. https://doi.org/10.5539/sar.v7n4p51
  • Chinseu, E. L., Stringer, L. C., & Dougill, A. J. (2019a). An empirically derived conceptual framework to assess dis-adoption of conservation agriculture. Journal of Sustainable Development, 12(5), 48–64. https://doi.org/10.5539/jsd.v12n5p48
  • Chinseu, E. L., Stringer, L. C., & Dougill, A. J. (2019b). Why do smallholder farmers dis-adopt conservation agriculture? Insights from Malawi. Land Degradation and Development, 30(5), 533–543. https://doi.org/10.1002/ldr.3190
  • Darshna, S., Sangavi, T., Mohan, S., Soundharya, A., & Desikan, S. (2015). Smart irrigation system. IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), 10(3), 32–36. https://doi.org/10.9790/2834-10323236
  • Daryanto, S., Fu, B., Wang, L., Jacinthe, P. A., & Zhao, W. (2018). Quantitative synthesis on the ecosystem services of cover crops. Earth-Science Reviews, 185, 357–373. https://doi.org/10.1016/j.earscirev.2018.06.013
  • Debaeke, P., Pellerin, S., & Scopel, E. (2017). Climate-smart cropping systems for temperate and tropical agriculture: Mitigation, adaptation and trade-offs. Cahiers Agricultures, 26(3), 1–12. https://doi.org/10.1051/cagri/2017028
  • Djido, A., Segnon, A. C., Botchway, V. A., Karbo, N., Sam, K. O., Essegbey, G. O., Nutsukpo, D. K., Asafu-Adjaye, N. Y., Agyemang, K., Whitbread, A., Thornton, T., & Zougmoré, R. B. (2021). Implementation, usage, and effectiveness of Ghana climate change policies: An assessment of the national CSA action plan and CSA investment framework. CCAFS Info Note.
  • Dougill, A. J., Hermans, T. D., Eze, S., Antwi-Agyei, P., & Sallu, S. M. (2021). Evaluating climate-smart agriculture as route to building climate resilience in African food systems. Sustainability, 13(17), 9909. https://doi.org/10.3390/su13179909
  • Essegbey, G. O., Nutsukpo, D., Karbo, N., & Zougmoré, R. (2015). National climate-smart agriculture and food security action plan of Ghana (2016–2020). Ghana Government.
  • Fadairo, O., Williams, P. A., & Nalwanga, F. S. (2020). Perceived livelihood impacts and adaptation of vegetable farmers to climate variability and change in selected sites from Ghana, Uganda and Nigeria. Environment, Development and Sustainability, 22(7), 6831–6849. https://doi.org/10.1007/s10668-019-00514-1
  • Food and Agriculture Organisation. (2002). The state of food and agriculture 2002.
  • Food and Agriculture Organization of the United Nations. (2010). Climate smart agriculture: Policies, practices and financing for food security, adaptation and mitigation.
  • Food and Agriculture Organization of the United Nations. (2016). The state of food and agriculture: Climate change, agriculture and food security.
  • Food and Agriculture Organization of the United Nations. (2021). Synergies and trade-offs in climate-smart agriculture – an approach to systematic assessment.
  • Ghana Statistical Service. (2014a). 2010 population and housing census. Bongo District analytical report. https://www2.statsghana.gov.gh/docfiles/2010_District_Report/Upper%20East/Bongo.pdf
  • Ghana Statistical Service. (2014b). 2010 population and housing census. Kintampo South District analytical report. https://www2.statsghana.gov.gh/docfiles/2010_District_Report/Brong%20Ahafo/Kintampo%20South_.pdf
  • Ghana Statistical Service. (2021). Ghana population and housing census (General Report. Vol. 3A).
  • Giller, K. E., Witter, E., Corbeels, M., & Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Research, 114(1), 23–34. https://doi.org/10.1016/j.fcr.2009.06.017
  • Girvetz, E. H., Corner-Dolloff, C., Lamanna, C., & Rosenstock, T. S. (2017). ‘CSA-plan’: Strategies to put climate-smart agriculture (CSA) into practice. Agriculture for Development, 30, 12–16. https://hdl.handle.net/10568/81374.
  • Goepel, K. D. (2013, June). Implementing the analytic hierarchy process as a standard method for multi-criteria decision making in corporate enterprises – a new AHP excel template with multiple inputs. In Proceedings of the International Symposium on the Analytic Hierarchy Process (Vol. 2, No. 10, pp. 1–10). Creative Decisions Foundation.
  • Gogoi, N., Baruah, K. K., & Meena, R. S. (2018). Grain legumes: Impact on soil health and agroecosystem. In Meena, R. S., Das, A., Yadav, G. S., & Lal, R. (Eds.) Legumes for soil health and sustainable management (pp. 511–539). Springer.
  • Goldberg, M. H., van der Linden, S., Maibach, E., & Leiserowitz, A. (2019). Discussing global warming leads to greater acceptance of climate science. Proceedings of the National Academy of Sciences, 116(30), 14804–14805. https://doi.org/10.1073/pnas.1906589116
  • Grafakos, S., Trigg, K., Landauer, M., Chelleri, L., & Dhakal, S. (2019). Analytical framework to evaluate the level of integration of climate adaptation and mitigation in cities. Climatic Change, 154(1), 87–106. https://doi.org/10.1007/s10584-019-02394-w
  • IPCC. (2014). Summary for policymakers. Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects (pp. 1–32). Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  • IPCC. (2018). Intergovernmental Panel on Climate Change, ‘global warming of 1.5°C’.
  • IPCC. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
  • Issahaku, G., & Abdulai, A. (2020). Can farm households improve food and nutrition security through adoption of climate-smart practices? Empirical evidence from northern Ghana. Applied Economic Perspectives and Policy, 42(3), 559–579. https://doi.org/10.1093/aepp/ppz002
  • Jaleta, M., Kassie, M., & Erenstein, O. (2015). Determinants of maize stover utilization as feed, fuel and soil amendment in mixed crop-livestock systems, Ethiopia. Agricultural Systems, 134, 17–23. https://doi.org/10.1016/j.agsy.2014.08.010
  • Jat, H. S., Datta, A., Choudhary, M., Sharma, P. C., & Jat, M. L. (2021). Conservation agriculture: Factors and drivers of adoption and scalable innovative practices in Indo-Gangetic plains of India – a review. International Journal of Agricultural Sustainability, 19(1), 40–55. https://doi.org/10.1080/14735903.2020.1817655
  • Jellason, N. P., Conway, J. S., & Baines, R. N. (2021). Understanding impacts and barriers to adoption of climate-smart agriculture (CSA) practices in North-Western Nigerian drylands. The Journal of Agricultural Education and Extension, 27(1), 55–72. https://doi.org/10.1080/1389224X.2020.1793787
  • Khalil, N., Kamaruzzaman, S. N., & Baharum, M. R. (2016). Ranking the indicators of building performance and the users’ risk via Analytical Hierarchy Process (AHP): Case of Malaysia. Ecological Indicators, 71, 567–576. https://doi.org/10.1016/j.ecolind.2016.07.032
  • Khatri-Chhetri, A., Aggarwal, P. K., Joshi, P. K., & Vyas, S. (2017). Farmers’ prioritization of climate-smart agriculture (CSA) technologies. Agricultural Systems, 151, 184–191. https://doi.org/10.1016/j.agsy.2016.10.005
  • Khatri-Chhetri, A., Pant, A., Aggarwal, P. K., Vasireddy, V. V., & Yadav, A. (2019). Stakeholders prioritization of climate-smart agriculture interventions: Evaluation of a framework. Agricultural Systems, 174, 23–31. https://doi.org/10.1016/j.agsy.2019.03.002
  • Klutse, N. A. B., Owusu, K., & Boafo, Y. A. (2020). Projected temperature increases over northern Ghana. SN Applied Sciences, 2(8), 1–14. https://doi.org/10.1007/s42452-020-3095-3
  • Kumar, N., Singh, S. K., Mishra, V. N., Reddy, G. P., & Bajpai, R. K. (2017). Soil quality ranking of a small sample size using AHP. Journal of Soil and Water Conservation, 16(4), 339–346. https://doi.org/10.5958/2455-7145.2017.00050.9
  • Kumar, S., Mamidanna, S., Rao, K. P. C., & Whitbread, A. M. (2018). Identifying low emissions development pathways–synergies and trade-offs: A case study of Mahbubnagar District, Telangana, India.
  • Lankoski, J., Ignaciuk, A., & Jésus, F. (2018). Synergies and trade-offs between adaptation, mitigation and agricultural productivity: A synthesis report.
  • Layek, J., Das, A., Mitran, T., Nath, C., Meena, R. S., Yadav, G. S., Shivakumar, B. G., Kumar, S., & Lal, R. (2018). Cereal+ legume intercropping: An option for improving productivity and sustaining soil health. In Meena, R. S., Das, A., Yadav, G. S., & Lal, R. (Eds.). Legumes for soil health and sustainable management (pp. 347–386). Springer.
  • Levene, H. (1960). Robust tests for equality of variances. In I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, & H. B. Mann (Eds.), Contributions to probability and statistics: Essays in honor of Harold hotelling (pp. 278–292). Stanford University Press.
  • Lipper, L., McCarthy, N., Zilberman, D., Asfaw, S., & Branca, G. (2017). Climate smart agriculture: Building resilience to climate change (p. 630). Springer Nature.
  • Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D., Henry, K., Hottle, R., Jackson, L., Jarvis, A., Kossam, F., Mann, W., McCarthy, N., Meybeck, A., Neufeldt, H., Remington, T., … Torquebiau, E. F. (2014). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068–1072. https://doi.org/10.1038/nclimate2437
  • Loboguerrero, A. M., Campbell, B. M., Cooper, P. J., Hansen, J. W., Rosentsock, T., & Wollenberg, E. (2019). Food and earth systems: Priorities for climate change adaptation and mitigation for agriculture and food systems. Sustainability, 11(5), 1372. https://doi.org/10.3390/su11051372
  • Maitra, S., Shankar, T., & Banerjee, P. (2020). Potential and advantages of maize-legume intercropping system. In A. Hossain (Ed.), Maize – production and use. IntechOpen. https://doi.org/10.5772/intechopen.91722
  • Makate, C. (2019). Effective scaling of climate smart agriculture innovations in African smallholder agriculture: A review of approaches, policy and institutional strategy needs. Environmental Science & Policy, 96, 37–51. https://doi.org/10.1016/j.envsci.2019.01.014
  • Miflin, B. (2000). Crop improvement in the 21st century. Journal of Experimental Botany, 51(342), 1–8. https://doi.org/10.1093/jexbot/51.342.1
  • Mishra, P., Singh, U., Pandey, C. M., Mishra, P., & Pandey, G. (2019). Application of student’s t-test, analysis of variance, and covariance. Annals of Cardiac Anaesthesia, 22(4), 407. https://doi.org/10.4103/aca.ACA_94_19
  • Mizik, T. (2021). Climate-smart agriculture on small-scale farms: A systematic literature review. Agronomy, 11(6), 1096. https://doi.org/10.3390/agronomy11061096
  • Murry, J. W., Jr., & Hammons, J. O. (1995). Assessing the managerial and leadership ability of community college administrative personnel. Community College Journal of Research and Practice, 19(3), 207–216. https://doi.org/10.1080/1066892950190303
  • Nassary, E. K., Baijukya, F., & Ndakidemi, P. A. (2020). Sustainable intensification of grain legumes optimizes food security on smallholder farms in sub-Saharan Africa – a review. International Journal of Agriculture and Biology, 23(1), 25–41. https://doi.org/10.17957/IJAB/15.1254
  • Obalum, S. E., Buri, M. M., Nwite, J. C., Watanabe, Y., Igwe, C. A., & Wakatsuki, T. (2012). Soil degradation-induced decline in productivity of sub-Saharan African soils: The prospects of looking downwards the lowlands with the Sawah ecotechnology. Applied and Environmental Soil Science, 2012. https://doi.org/10.1155/2012/673926
  • Ochieng, J., Afari-Sefa, V., Muthoni, F., Kansiime, M., Hoeschle-Zeledon, I., Bekunda, M., & Thomas, D. (2022). Adoption of sustainable agricultural technologies for vegetable production in rural Tanzania: Trade-offs, complementarities and diffusion. International Journal of Agricultural Sustainability, 20(4), 478–496. https://doi.org/10.1080/14735903.2021.1943235
  • Ogunyiola, A., Gardezi, M., & Vij, S. (2022). Smallholder farmers’ engagement with climate smart agriculture in Africa: Role of local knowledge and upscaling. Climate Policy, 22(4), 411–426. https://doi.org/10.1080/14693062.2021.2023451
  • Owens, J. S., Cox, H., deVoil, P., Power, B., Conway, M., & Routley, R. (2009, July). APSFarm: A new framework for modelling mixed cropping and grazing farm businesses. In Presentation at 18th World IMACS/MODSIM Congress, Cairns, Australia (pp. 13–17).
  • Partey, S. T., Zougmoré, R. B., Ouédraogo, M., & Campbell, B. M. (2018). Developing climate-smart agriculture to face climate variability in West Africa: Challenges and lessons learnt. Journal of Cleaner Production, 187, 285–295. https://doi.org/10.1016/j.jclepro.2018.03.199
  • Rao, A. S., Lenka, N. K., Biswas, A. K., & Ramesh, K. (2015). Soil health enhancement. Indian Journal of Fertilisers, 11(4), 28–37.
  • Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5
  • Saaty, T. L. (1990). An exposition of the AHP in reply to the paper “remarks on the analytic hierarchy process”. Management Science, 36(3), 259–268. https://doi.org/10.1287/mnsc.36.3.259
  • Saaty, T. L. (2004). Decision making – the analytic hierarchy and network processes (AHP/ANP). Journal of Systems Science and Systems Engineering, 13(1), 1–35. https://doi.org/10.1007/s11518-006-0151-5
  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98. https://doi.org/10.1504/IJSSCI.2008.017590
  • Saaty, T. L., & Özdemir, M. S. (2014). How many judges should there be in a group? Annals of Data Science, 1(3–4), 359–368. https://doi.org/10.1007/s40745-014-0026-4
  • Sanou, J., Bationo, B. A., Barry, S., Nabie, L. D., Bayala, J., & Zougmore, R. (2016). Combining soil fertilization, cropping systems and improved varieties to minimize climate risks on farming productivity in northern region of Burkina Faso. Agriculture & Food Security, 5(1), 1–12. https://doi.org/10.1186/s40066-016-0067-3
  • Sapkota, A., Haghverdi, A., Avila, C. C., & Ying, S. C. (2020). Irrigation and greenhouse gas emissions: A review of field-based studies. Soil Systems, 4(2), 20. https://doi.org/10.3390/soilsystems4020020
  • Segnon, A. C., Achigan-Dako, E. G., Gaoue, O. G., & Ahanchédé, A. (2015). Farmer’s knowledge and perception of diversified farming systems in sub-humid and semi-arid areas in Benin. Sustainability, 7(6), 6573–6592. https://doi.org/10.3390/su7066573
  • Serdeczny, O., Adams, S., Baarsch, F., Coumou, D., Robinson, A., Hare, W., Schaeffer, M., Perrette, M., & Reinhardt, J. (2017). Climate change impacts in sub-Saharan Africa: From physical changes to their social repercussions. Regional Environmental Change, 17(6), 1585–1600. https://doi.org/10.1007/s10113-015-0910-2
  • Seyoum, A., Nega, A., Wagaw, K., Tadesse, T., Tadesse, D., Tirfessa, A., Amare, S., Amare, N., Kedanemaryam, W., Taye, T., Diriba, T., Alemu, T., Habte, N., Adane, G., Sewmehone, S., Tsegaye, G., Chalachew, E., Hailemariam, S., Tamirat, B., … Bogale, M. (2020). Multi environment and spatial analysis of early maturing sorghum [Sorghum bicolor (L.) Moench] genotypes in dry lowland areas of Ethiopia. African Journal of Agricultural Research, 15(2), 278–290. https://doi.org/10.5897/AJAR2019.14495
  • Shiwakoti, S., Zheljazkov, V. D., Gollany, H. T., Kleber, M., Xing, B., & Astatkie, T. (2019). Micronutrients in the soil and wheat: Impact of 84 years of organic or synthetic fertilization and crop residue management. Agronomy, 9(8), 464. https://doi.org/10.3390/agronomy9080464
  • Shrestha, S., & Dhakal, S. (2019). An assessment of potential synergies and trade-offs between climate mitigation and adaptation policies of Nepal. Journal of Environmental Management, 235, 535–545. https://doi.org/10.1016/j.jenvman.2019.01.035
  • Silberg, T. R., Richardson, R. B., & Lopez, M. C. (2020). Maize farmer preferences for intercropping systems to reduce Striga in Malawi. Food Security, 12(2), 269–283. https://doi.org/10.1007/s12571-020-01013-2
  • Solanki, M. K., Wang, F. Y., Li, C. N., Wang, Z., Lan, T. J., Singh, R. K., Yang, L.-T., & Li, Y. R. (2020). Impact of sugarcane–legume intercropping on diazotrophic microbiome. Sugar Tech, 22(1), 52–64. https://doi.org/10.1007/s12355-019-00755-4
  • Swart, R. J. (2009). Climate change versus development: Trade-offs and synergies. Policy Network.
  • Teklewold, H., Mekonnen, A., Gebrehiwot, T., & Bezabih, M. (2020). Open access post-harvest grazing and farmers’ preferences for forage production incentives in Ethiopia. Land Use Policy, 96, Article 104685. https://doi.org/10.1016/j.landusepol.2020.104685
  • Tongwane, M. I., & Moeletsi, M. E. (2018). A review of greenhouse gas emissions from the agriculture sector in Africa. Agricultural Systems, 166, 124–134. https://doi.org/10.1016/j.agsy.2018.08.011
  • Toth, G. G., Nair, P. R., Duffy, C. P., & Franzel, S. C. (2017). Constraints to the adoption of fodder tree technology in Malawi. Sustainability Science, 12(5), 641–656. https://doi.org/10.1007/s11625-017-0460-2
  • Totin, E., Segnon, A. C., Schut, M., Affognon, H., Zougmoré, R. B., Rosenstock, T., & Thornton, P. K. (2018). Institutional perspectives of climate-smart agriculture: A systematic literature review. Sustainability, 10(6), 1990. https://doi.org/10.3390/su10061990
  • UNEP. (2011). State of the environment report.
  • Valarmathi, M., Muthukumar, M., Rahman, H., & Sasikala, R. (2019). Development of early maturing, high yielding, drought tolerant rice variety with superior grain quality through molecular breeding and its performance evaluation. Journal of Pharmacognosy and Phytochemistry, 8(2), 338–346.
  • Valbuena, D., Tui, S. H. K., Erenstein, O., Teufel, N., Duncan, A., Abdoulaye, T., Swain, B., Mekonnen, K., Germaine, I., & Gérard, B. (2015). Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in sub-Saharan Africa and South Asia. Agricultural Systems, 134, 107–118. https://doi.org/10.1016/j.agsy.2014.05.013
  • Van Oort, P. A., & Zwart, S. J. (2018). Impacts of climate change on rice production in Africa and causes of simulated yield changes. Global Change Biology, 24(3), 1029–1045. https://doi.org/10.1111/gcb.13967
  • Vom Brocke, K., Kondombo, C. P., Guillet, M., Kaboré, R., Sidibé, A., Temple, L., & Trouche, G. (2020). Impact of participatory sorghum breeding in Burkina Faso. Agricultural Systems, 180, Article 102775. https://doi.org/10.1016/j.agsy.2019.102775
  • Waaswa, A., Oywaya Nkurumwa, A., Mwangi Kibe, A., & Ngeno Kipkemoi, J. (2022). Climate-smart agriculture and potato production in Kenya: Review of the determinants of practice. Climate and Development, 14(1), 75–90. https://doi.org/10.1080/17565529.2021.1885336
  • Westcott, R. A. (2019, April 29–May 3). Farms, fire and fuels: Exploring the relationship between cropland fires and modern farming. Proceedings for the 6th International Fire Behavior and Fuels Conference, Sydney, NSW, Australia.
  • Zakaria, A., Alhassan, S. I., Kuwornu, J. K., Azumah, S. B., & Derkyi, M. A. (2020). Factors influencing the adoption of climate-smart agricultural technologies among rice farmers in northern Ghana. Earth Systems and Environment, 4(1), 257–271. https://doi.org/10.1007/s41748-020-00146-w
  • Zaveri, E., & Lobell, D. B. (2019). The role of irrigation in changing wheat yields and heat sensitivity in India. Nature Communications, 10(1), 1–7. https://doi.org/10.1038/s41467-019-12183-9
  • Zhao, J., Yang, Y., Zhang, K., Jeong, J., Zeng, Z., & Zang, H. (2020). Does crop rotation yield more in China? A meta-analysis. Field Crops Research, 245, Article 107659. https://doi.org/10.1016/j.fcr.2019.107659
  • Zou, X., Li, Y. E., Li, K., Cremades, R., Gao, Q., Wan, Y., & Qin, X. (2015). Greenhouse gas emissions from agricultural irrigation in China. Mitigation and Adaptation Strategies for Global Change, 20(2), 295–315. https://doi.org/10.1007/s11027-013-9492-9