1,008
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Environmental impact of agricultural sprayers used in Japanese rice farming

ORCID Icon, & ORCID Icon
Article: 2247803 | Received 23 Jan 2023, Accepted 10 Aug 2023, Published online: 19 Aug 2023

References

  • Aboal, D., Mondelli, M., & Vairo, M. (2019). Innovation and productivity in agricultural firms: Evidence from a country-wide farm-level innovation survey. Economics of Innovation and New Technology, 28(6), 616–634. https://doi.org/10.1080/10438599.2018.1546558
  • Alhashim, R., Deepa, R., & Anandhi, A. (2021). Environmental impact assessment of agricultural production using LCA: A review. Climate, 9(11), 164. https://doi.org/10.3390/cli9110164
  • Avgoustaki, D. D., & Xydis, G. (2020). Plant factories in the water-food-energy nexus era: A systematic bibliographical review. Food Security, 12(2), 253–268. https://doi.org/10.1007/s12571-019-01003-z
  • Directorate of Economics and Statistics. (2020). Pocket book of agricultural statistics 2020. Retrieved November 22, 2022, from https://desagri.gov.in/wp-content/uploads/2021/06/Pocket-2020-Final-web-file.pdf
  • Engler, N., & Krarti, M. (2021). Review of energy efficiency in controlled environment agriculture. Renewable and Sustainable Energy Reviews, 141, Article 110786. https://doi.org/10.1016/j.rser.2021.110786
  • Escobar, N., Bautista, I., Peña, N., Fenollosa, M. L., Osca, J. M., & Sanjuán, N. (2022). Life cycle thinking for the environmental and financial assessment of rice management systems in the Senegal River valley. Journal of Environmental Management, 310, Article 114722. https://doi.org/10.1016/j.jenvman.2022.114722
  • Giuliana, V., Lucia, M., Marco, R., & Simone, V. (2022). Environmental life cycle assessment of rice production in northern Italy: A case study from Vercelli. The International Journal of Life Cycle Assessment, 1–18. https://doi.org/10.1007/s11367-022-02109-x
  • Groen, E. A., Bokkers, E. A., Heijungs, R., & de Boer, I. J. (2017). Methods for global sensitivity analysis in life cycle assessment. The International Journal of Life Cycle Assessment, 22(7), 1125–1137. https://doi.org/10.1007/s11367-016-1217-3
  • Hauschild, M. Z. (2005). Assessing environmental impacts in a life-cycle perspective. Environmental Science & Technology, 39(4), 81a–88a. https://doi.org/10.1021/es053190s
  • Hokazono, S., & Hayashi, K. (2012). Variability in environmental impacts during conversion from conventional to organic farming: A comparison among three rice production systems in Japan. Journal of Cleaner Production, 28, 101–112. https://doi.org/10.1016/j.jclepro.2011.12.005
  • Hokkaido Prefecture. (2014). Agricultural machinery introduction plan formulation guide (in Japanese). Retrieved December 12, 2022, from http://www.pref.hokkaido.lg.jp/ns/gjf/kankyo/tokuteikouseinou_keikaku.pdf
  • Hokkaido Prefecture. (2019). Hokkaido agricultural production technology system (5th ed.). Public Interest Incorporated Foundation Hokkaido Agricultural Extension Association (in Japanese).
  • Juhola, S., Klein, N., Käyhkö, J., & Neset, T. S. S. (2017). Climate change transformations in Nordic agriculture? Journal of Rural Studies, 51, 28–36. https://doi.org/10.1016/j.jrurstud.2017.01.013
  • Koiwanit, J. (2018). Analysis of environmental impacts of drone delivery on an online shopping system. Advances in Climate Change Research, 9(3), 201–207. https://doi.org/10.1016/j.accre.2018.09.001
  • Li, Y., Conway, D., Xiong, W., Gao, Q., Wu, Y., Wan, Y., Li, Y., & Zhang, S. (2011). Effects of climate variability and change on Chinese agriculture: A review. Climate Research, 50(1), 83–102. https://doi.org/10.3354/cr01038
  • MAFF. (2018a). Development of smart agriculture (in Japanese). Retrieved December 10, 2022, from https://www.affrc.maff.go.jp/docs/smart_agri_pro/attach/pdf/smart_agri_pro-11.pdf
  • MAFF. (2018b). Smart agriculture demonstration project (in Japanese). Retrieved December 10, 2022, from https://www.affrc.maff.go.jp/docs/smart_agri_pro/attach/pdf/smart_agri_pro-20.pdf
  • MAFF. (2019a). Toward wider use of agricultural drones (in Japanese). Retrieved November 22, 2022, from https://www.maff.go.jp/j/kanbo/smart/attach/pdf/drone-165.pdf
  • MAFF. (2019b). The implementation status of aerial spraying of pesticides (in Japanese). Retrieved December 10, 2022, from https://www.maff.go.jp/j/syouan/syokubo/gaicyu/g_kouku_zigyo/attach/pdf/index-49.pdf
  • MAFF. (2020). Prevention, control and spread of diseases and pests (in Japanese). Retrieved December 12, 2022, from https://www.maff.go.jp/j/syouan/syokubo/keneki/attach/pdf/arikata-19.pdf
  • MAFF. (2022a). Pesticide registration information system (in Japanese). Retrieved December 12, 2022, from https://pesticide.maff.go.jp/
  • MAFF. (2022b). Food subcommittee of the council on food, agriculture and rural policies. Retrieved November 22, 2022, from https://www.maff.go.jp/j/council/seisaku/syokuryo/210226/attach/pdf/index-36.pdf
  • MAFF. (2022c). FY2021 summary of the annual report on food, agriculture and rural areas in Japan. Retrieved November 22, 2022, from https://www.maff.go.jp/j/wpaper/w_maff/r3/zenbun.html
  • Matsumoto, H. (2020). Effects of cooperative work using an agricultural robot in a paddy field farming. The Farm Management Society of Kanto Tokai Hokuriku District, 110, 51–58 (in Japanese). https://fmrp.rad.naro.go.jp/KTHJFM/dl_files/110/KTHJFM_110_059-064.pdf.
  • McCartney, L., & Lefsrud, M. (2018). Protected agriculture in extreme environments: A review of controlled environment agriculture in tropical, arid, polar, and urban locations. Applied Engineering in Agriculture, 34(2), 455–473. https://doi.org/10.13031/aea.12590
  • MLIT. (2021). UAV flight manual (in Japanese). Retrieved July 13, 2021, from https://www.mlit.go.jp/common/001218180.pdf
  • O'Sullivan, C. A., Bonnett, G. D., McIntyre, C. L., Hochman, Z., & Wasson, A. P. (2019). Strategies to improve the productivity, product diversity and profitability of urban agriculture. Agricultural Systems, 174, 133–144. https://doi.org/10.1016/j.agsy.2019.05.007
  • Rezaei, M., Soheilifard, F., & Keshvari, A. (2021). Impact of agrochemical emission models on the environmental assessment of paddy rice production using life cycle assessment approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–16. https://doi.org/10.1080/15567036.2020.1864066
  • Sande, D., Mullen, J., Wetzstein, M., & Houston, J. (2011). Environmental impacts from pesticide use: A case study of soil fumigation in Florida tomato production. International Journal of Environmental Research and Public Health, 8(12), 4649–4661. https://doi.org/10.3390/ijerph8124649
  • Santiteerakul, S., Sopadang, A., Yaibuathet Tippayawong, K., & Tamvimol, K. (2020). The role of smart technology in sustainable agriculture: A case study of wangree plant factory. Sustainability, 12(11), 4640. https://doi.org/10.3390/su12114640
  • Scientific Applications International Corporation. (2006). Life-cycle assessment: Principles and practice. National Risk Management Research Laboratory (US), Office of Research and Development, Environmental Protection Agency, United States. http://people.cs.uchicago.edu/~ftchong/290N-W10/EPAonLCA2006.pdf
  • Seo, Y., & Umeda, S. (2021). Evaluating farm management performance by the choice of pest-control sprayers in rice farming in Japan. Sustainability, 13(5), 2618. https://doi.org/10.3390/su13052618
  • Smith, H. E., Sallu, S. M., Whitfield, S., Gaworek-Michalczenia, M. F., Recha, J. W., Sayula, G. J., & Mziray, S. (2021). Innovation systems and affordances in climate smart agriculture. Journal of Rural Studies, 87, 199–212. https://doi.org/10.1016/j.jrurstud.2021.09.001
  • Stergiou, V., Konstantopoulos, G., & Charitidis, C. A. (2022). Carbon fiber reinforced plastics in space: Life cycle assessment towards improved sustainability of space vehicles. Journal of Composites Science, 6(5), 144. https://doi.org/10.3390/jcs6050144]
  • Sun, W. (2020). Efficient pest control technology using multicopters in mountainous regions (NARO Technical Report 5; pp. 30–33). https://www.naro.go.jp/publicity_report/publication/files/naro_technical_report_no5.pdf
  • Umeda, S., Yoshikawa, N., & Seo, Y. (2022). Cost and workload assessment of agricultural drone sprayer: A case study of rice production in Japan. Sustainability, 14(17), 10850. https://doi.org/10.3390/su141710850
  • United State Environmental Protection Agency. (1993). Office of research and development, life cycle assessment: Inventory guidelines and principles (EPA/600/R-92/245). https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=NRMRL&dirEntryID=124777
  • Vasconez, J. P., Kantor, G. A., & Cheein, F. A. A. (2019). Human–robot interaction in agriculture: A survey and current challenges. Biosystems Engineering, 179, 35–48. https://doi.org/10.1016/j.biosystemseng.2018.12.005
  • Wernet, Gregor, Bauer, Christian, Steubing, Bernhard, Reinhard, Jürgen, Moreno-Ruiz, Emilia, & Weidema, Bo. (2016). The ecoinvent database version 3 (part I): Overview and methodology. The International Journal of Life Cycle Assessment, 21(9), 1218–1230. http://dx.doi.org/10.1007/s11367-016-1087-8
  • Witik, R. A., Teuscher, R., Michaud, V., Ludwig, C., & Månson, J. A. E. (2013). Carbon fibre reinforced composite waste: An environmental assessment of recycling, energy recovery and landfilling. Composites Part A: Applied Science and Manufacturing, 49, 89–99. https://doi.org/10.1016/j.compositesa.2013.02.009
  • Xu, Q., Dai, L., Gao, P., & Dou, Z. (2022). The environmental, nutritional, and economic benefits of rice-aquaculture animal coculture in China. Energy, 249, Article 123723. https://doi.org/10.1016/j.energy.2022.123723
  • Yang, Y., Boom, R., Irion, B., van Heerden, D. J., Kuiper, P., & de Wit, H. (2012). Recycling of composite materials. Chemical Engineering and Processing: Process Intensification, 51, 53–68. https://doi.org/10.1016/j.cep.2011.09.007