Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 58, 2023 - Issue 7
45
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Corrosion resistance of structural metals depending on the sample orientation and initial exposure conditions in coastal and rural atmospheres. Part 1. Corrosivity toward structural metals at coastal and rural test sites under various exposure conditions

, ORCID Icon, & ORCID Icon
Pages 645-658 | Received 21 Mar 2023, Accepted 03 Aug 2023, Published online: 17 Aug 2023

References

  • Knotkova D, Kreislova K, Dean SW. ISOCORRAG international atmospheric exposure program: summary of results; ASTM Series 71; ASTM International: West Conshohocken, PA, USA; 2010.
  • Morcillo M. Atmospheric corrosion in Ibero-America: the MICAT project. In: Atmospheric corrosion, ASTM STP 1239, W.W.Kirk and Herbert H. Lawson, EDS., American Society for Testing and Materials, Philadelphia. USA. P. 1995:257–275.
  • Morcillo M, Almeida E, Rosales B, et al. Corrosión y protección de metales en las atmósferas de iberoamerica. programa CYTED, Gráficas Salué: Madrid, Spain; 1998.
  • Tidblad J, Kucera V, Mikhailov AA. Statistical analysis of 8-year materials exposure and acceptable deterioration and pollution levels. Swedish Corrosion Institute, Stockholm Sweden; 1998.
  • Abbott WH. A decade of corrosion monitoring in the world’s military operating environments: a summary of results. Battelle Columbus Operations, Dublin, OH, USA; 2008.
  • Panchenko Y, Shuvakhina LN, Mikhailovsky YN. Atmospheric corrosion of metals in far Eastern regions. Zashch Met. 1982;18:575–582 (in Russian).
  • Abramova MG, Panchenko Y, Vetrova EU, et al. Atmospheric corrosivity in different climatic regions of the Russian Federation. Corros Mater Protect. 2022;3:12–22 (in Russian). doi:10.31044/1813-7016-2020-0-3-12-22
  • Mendoza AR, Corvo F. Outdoor and indoor atmospheric corrosion of non ferrous metal. J Corros Sci. 2000;42:1123–1147. doi:10.1016/S0010-938X(99)00135-3
  • Martin-Regueira Y, Ledea O, Corvo F, et al. Indoor atmospheric corrosion of copper and steel under heat trap conditions in Cuban tropical climate. Corros Eng Sci Technol. 2011;46:624–633. doi:10.1179/147842209X12579401586762
  • Winston RR. Uhling’s corrosion handbook. New York: John Wiley & Sons, Inc.; 2005, P580.
  • Chen B, Xu YL, Qu WL. Evaluation of atmospheric corrosion damage to steel space structures in coastal areas. Int J Solids Struct. 2005;42(16):4673–4694. doi:10.1016/j.ijsolstr.2005.02.004
  • Araban V, Kahram M, Rezakhani D. Evaluation of copper atmospheric corrosion in different environments of Iran. Corros Eng Sci Technol. 2016;51(7):498–506. doi:10.1080/1478422X.2016.1144265
  • ISO 9225:2012(Е). Corrosion of metals and alloys – corrosivity of atmospheres –measurement of environmental parameters affecting corrosivity of atmospheres, 2012. Classification, determination and estimation, International Standards Organization, Geneva; 2012.
  • Mikhailov AA, Tidblad J, Kucera V. The classification system of ISO 9223 standard and the dose-response functions assessing the corrosivity of outdoor atmospheres. Prot Met. 2004;40(6):541–550. doi:10.1023/B:PROM.0000049517.14101.68
  • Pourbaix M. The linear bilogaritmic law for atmospheric corrosion. In: Ailor WH, editor. Atmospheric corrosion. New York: The Electrochemical Society, John Wiley and Sons; 1982. p. 107–121.
  • Benarie M, Lipfert FL. A general corrosion function in terms of atmospheric pollutant concentrations and rain ph. Atmos Environ. 1986;20:1947–1958. doi:10.1016/0004-6981(86)90336-7
  • McCuen RH, Albrecht P, Cheng JG. A new approach to power-model regression of corrosion penetration data. Corrosion Forms and Control for Infrastructure (Chaker V, ed.) ASTM STP 1137. 1992:46–76. doi:10.1520/STP19754S
  • Feliu S, Morcillo M, Feliu Jr S. The prediction of atmospheric corrosion from meteorological and pollution parameters – I. Annual corrosion. Corros Sci. 1993;34:403–414. doi:10.1016/0010-938X(93)90112-T
  • Feliu S, Morcillo M, Feliu Jr S. The prediction of atmospheric corrosion from meteorological and pollution parameters – II. Long-term forecasts. Corros Sci. 1993;34:415–422. doi:10.1016/0010-938X(93)90113-U
  • Chico B, De la Fuente D, Vega JM, et al. Mapas de España de corrosividad del zinc en atmósferas rurales. Rev Metal. 2010;46(6):485–492. doi:10.3989/revmetalmadrid.1035
  • Albrecht P, Hall TT. Atmospheric corrosion resistance of structural steels. J Mater Civ Eng. 2003;15:2–24. doi:10.1061/(ASCE)0899-1561(2003)15:1(2)
  • Klinesmith DE, McCuen R, Albrecht P. Effect of environmental condition on corrosion rate. J Mater Civil Eng, ASCE. 2007;19:121–129. doi:10.1061/(ASCE)0899-1561(2007)19:2(121)
  • Castañeda A, Fernández D, Valdés C, et al. Estudio de la corrosión atmosférica en una zona estratégica de Cuba. Rev CENIC Cien Quím. 2015;46:14–25.
  • Panchenko Y, Marshakov AI. Prediction of first-year corrosion losses of carbon steel and zinc in continental regions. Materials (Basel). 2017;10(4):422. doi:10.3390/ma10040422
  • Panchenko Y, Marshakov AI, Nikolaeva LA, et al. Prediction of first-year corrosion losses of copper and aluminum in continental regions. AIMS Mater Sci. 2018;5(4):624–649. doi:10.3934/matersci.2018.4.624
  • Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review. Corros Sci. 2013;77:6–24. doi:10.1016/j.corsci.2013.08.021
  • Adikari M, Munasinghe N. Development of a corrosion model for prediction of atmospheric corrosion of mild steel. AJCBM. 2016;2(6):91–96. doi:10.11648/j.ajasr.20160206.20
  • Sanial B, Singkhaniya GK, Nanda JN. Proc. 3rd Int. Congress on the Corrosion of Metals. Mir. 1968;4:552–563 (In Russian).
  • Rajagopalan KS, Annamalai P, Sundapam M, et al. Atmospheric corrosion of metals at Mandapam Camp, India. Brit Corros J. 1971;6(4):175–183. doi:10.1179/000705971798323775
  • ISO 9223:2012(E). Corrosion of metals and alloys – corrosivity of atmospheres – classification, determination and estimation, International Standards Organization, Geneva; 2012.
  • Corvo F. Atmospheric corrosion of steel in humid tropical climate. Influence of pollution, humidity, temperature, rainfall and sun radiation. Corrosion. 1984;40:170–175. doi:10.5006/1.3581934
  • Takebe M, Ohya M, Hirose N, et al. Difference in precipitation rates of air-borne salts collected by the dry gauze method and the Doken tank method. Corros Sci. 2010;52:2928–2935. doi:10.1016/j.corsci.2010.05.004
  • Pongsaksawad W, Klomjit P, Khamsuk P, et al. Chloride distribution model and corrosion map of structural steels for tropical climate in Thailan. Sci Total Environ. 2021;787:147465. doi:10.1016/j.scitotenv.2021.147465
  • Priyotomo G, Prifiharni S, Nuraini L, et al. A field study of atmospheric corrosion of carbon steel after short exposure in Pelabuhan Ratu, West Java Province, Indonesia. Walailak J Sci Tech. 2021;18(17):9667. doi:10.48048/wjst.2021.9667
  • Santana JJ, Cano V, Vasconcelos HC, et al. The influence of test-panel orientation and exposure angle on the corrosion rate of carbon steel. mathematical modelling. Metals (Basel). 2020;10:196. doi:10.3390/met10020196
  • Alcаntara J, de la Fuente D, Chico B, et al. Marine atmospheric corrosion of carbon steel: a review. Materials (Basel). 2017;10:406. doi:10.3390/ma10040406
  • Roberge PR, Klassen RD, Haberecht PW. Atmospheric corrosivity modeling – a review. Mater Des. 2002;23:321–330. doi:10.1016/S0261-3069(01)00051-6
  • ISO 8565:2011. Corrosion of metals and alloys — atmospheric corrosion testing — general requirements. International Standards Organization, Geneva; 2011.
  • ISO 9226:2012. Corrosion of metals and alloys – corrosivity of atmospheres – determination of corrosion rate of standard specimens for the evaluation of corrosivity. International Standards Organization, Geneva; 2012.
  • ISO 8407:2021. Corrosion of metals and alloys—removal of corrosion products from corrosion test specimens. ASTM G1.
  • Panchenko Y, Marshakov AI, Nikolaeva LA, et al. Estimating the first-year corrosion losses of structural metals for continental regions of the world. Civ Eng J. 2020;6(8):1503–1519. doi:10.28991/cej-2020-03091563
  • Panchenko Y, Marshakov AI, Nikolaeva LA, et al. Development of models for the prediction of first-year corrosion losses of standard metals for territories with a coastal atmosphere in various climatic regions of the world. Corros Eng Sci Technol. 2020;55(8):655–669. doi:10.1080/1478422X.2020.1772535

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.