Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 58, 2023 - Issue 7
492
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Insights into crystallographic and topographic characteristics of local corrosion attack on zinc

ORCID Icon, , , &
Pages 667-675 | Received 15 May 2023, Accepted 08 Aug 2023, Published online: 05 Sep 2023

References

  • Bernard MC, Goff AH, Phillips N. In situ Raman study of the corrosion of zinc coated steel in the presence of chloride: II. Mechanisms of underpaint corrosion and role of the conversion layers. J Electrochem Soc 1995;142(7):2167–2170. doi:10.1149/1.2044269
  • Ramanauskas R, Juškenas R, Kaliničenko A, et al. Microstructure and corrosion resistance of electrodeposited zinc alloy coatings. J Solid State Electrochem 2004;8(6):416–421. doi:10.1007/s10008-003-0444-2
  • Crundwell FK. Kinetics and mechanism of the oxidative dissolution of a zinc sulphide concentrate in ferric sulphate solutions. Hydrometallurgy. 1987;19(2):227–242. doi:10.1016/0304-386X(87)90007-7
  • Graedel TE. Corrosion mechanisms for zinc exposed to the atmosphere. J Electrochem Soc 1989;136(4):193C–203C. doi:10.1149/1.2096868
  • Abayarathna D, Hale EB, O’Keefe TJ, et al. Effects of sample orientation on the corrosion of zinc in ammonium sulfate and sodium hydroxide solutions. Corros Sci 1991;32(7):755–768. doi:10.1016/0010-938X(91)90089-8
  • Park CJ, Lohrengel MM, Hamelmann T, et al. Grain-dependent passivation of surfaces of polycrystalline zinc. Electrochim Acta. 2002;47(21):3395–3399. doi:10.1016/S0013-4686(02)00221-9
  • Khorsand S, Raeissi K, Golozar MA. An investigation on the role of texture and surface morphology in the corrosion resistance of zinc electrodeposits. Corros Sci 2011;53(8):2676–2678. doi:10.1016/j.corsci.2011.04.007
  • Chandrasekar MS, Pushpavanam M. Synergetic effects of pulse constraints and additives in electrodeposition of nanocrystalline zinc : Corrosion, structural and textural characterization. Mater Chem Phys 2010;124(1):516–528. doi:10.1016/j.matchemphys.2010.07.004
  • Shkirskiy V, Yule LC, Daviddi E, et al. Nanoscale scanning electrochemical cell microscopy and correlative surface structural analysis to Map anodic and cathodic reactions on polycrystalline Zn in acid media. J Electrochem Soc 2020;167(4):0041507. doi:10.1149/1945-7111/ab739d
  • BlueScope Steel. “Corrosion. Corrosion Resistance of Zinc in Water,” Tech. Bull. CTB-05, pp. 1–2.
  • Mena E, Veleva L, Souto RM. Mapping of local corrosion behavior of zinc in substitute ocean water at its initial stages by SVET. Int J Electrochem Sci. 2016;11:5256–5266. doi:10.20964/2016.06.50
  • Cole IS, Ganther WD, Furman SA, et al. Pitting of zinc : Observations on atmospheric corrosion in tropical countries. Corros Sci 2010;52(3):848–858. doi:10.1016/j.corsci.2009.11.002
  • Cole IS, Electrochem J, Soc C. Products formed during the interaction of seawater droplets with Zinc surfaces : II. Results from short exposures products formed during the interaction of seawater droplets II. J Electrochem Soc 2010;157:C213. doi:10.1149/1.3391383
  • Wang YD, Yang YS, Cole I, et al. Investigation of the microstructure of an aqueously corroded zinc wire by data-constrained modelling with multi-energy X-ray CT. Mater Corros 2013;64(3):180–184. doi:10.1002/maco.201106341
  • Silva Filho JF, Lins VFC. Crystallographic texture and morphology of an electrodeposited zinc layer. Surf. Coatings Technol. 2006;200(9):2892–2899. doi:10.1016/j.surfcoat.2005.04.032
  • Nowell MM, Witt RA, True BW. Ebsd sample preparation: techniques, tips, and tricks. Micros. Today. 2005;13(4):44–49. doi:10.1017/S1551929500053669
  • Guo J, Amira S, Gougeon P, et al. Effect of the surface preparation techniques on the EBSD analysis of a friction stir welded AA1100-B4C metal matrix composite. Mater Charact 2011;62(9):865–877. doi:10.1016/j.matchar.2011.06.007
  • Chen YJ, Hjelen J, Roven HJ. Application of EBSD technique to ultrafine grained and nanostructured materials processed by severe plastic deformation: Sample preparation, parameters optimization and analysis. Trans. Nonferrous Met. Soc. China 2012;22(8):1801–1809. doi:10.1016/S1003-6326(11)61390-3
  • Zhong X, Burke MG, Withers PJ, et al. Multi-modal plasma focused ion beam serial section tomography of an organic paint coating. Ultramicroscopy. 2017;197:1–10. doi:10.1016/j.ultramic.2018.10.003
  • Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682. doi:10.1038/nmeth.2019
  • WM Haynes E. Crc handbook of chemistry and physics. CRC Press; Boca Raton, Florida, 2011.
  • Burnett TL, Winiarski B, Kelley R, et al. Xe+ plasma FIB: 3D microstructures from nanometers to hundreds of micrometers. Micros Today. 2016;24(03):32–39. doi:10.1017/S1551929516000316
  • Rubanov S, Munroe PR. FIB-induced damage in silicon. J Microsc 2004;214(3):213–221. doi:10.1111/j.0022-2720.2004.01327.x
  • Michael JR, Giannuzzi LA, Burke MG, et al. Mechanism of FIB-induced phase transformation in austenitic steel. Microsc Microanal 2022;28(1):70–82. doi:10.1017/S1431927621013738
  • Zhong X, Wade CA, Withers PJ, et al. Comparing Xe+pFIB and Ga+FIB for TEM sample preparation of Al alloys: Minimising FIB-induced artefacts. J Microsc 2021;282(2):101–112. doi:10.1111/jmi.12983
  • Ziegler JF, Ziegler MD, Biersack JP. Nuclear Instruments and Methods in physics research B SRIM – The stopping and range of ions in matter (2010). Nucl. Inst. Methods Phys. Res. B. 2010;268(11–12):1818–1823. doi:10.1016/j.nimb.2010.02.091
  • “Scanning - 2007 - Drouin - CASINO V2 42 A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and.pdf.”.
  • Zhong XL, Haigh SJ, Zhou X, et al. An in-situ method for protecting internal cracks/pores from ion beam damage and reducing curtaining for TEM sample preparation using FIB. Ultramicroscopy. 2020;219(October):113135. doi:10.1016/j.ultramic.2020.113135
  • Han G, Lee J-Y, Kim Y-C, et al. Preferred crystallographic pitting corrosion of pure magnesium in Hanks’ solution. Corros Sci 2012;63:316–322. doi:10.1016/j.corsci.2012.06.011
  • Pawar S, Slater TJA, Burnett TL, et al. Crystallographic effects on the corrosion of twin roll cast AZ31 Mg alloy sheet. Acta Mater 2017;133:90–99. doi:10.1016/j.actamat.2017.05.027
  • Song GL, Mishra R, Xu Z. Crystallographic orientation and electrochemical activity of AZ31 Mg alloy. Electrochem Commun 2010;12(8):1009–1012. doi:10.1016/j.elecom.2010.05.011
  • Ramanauskas R. Structural factor in Zn alloy electrodeposit corrosion. Appl Surf Sci 1999;153(1):53–64. doi:10.1016/S0169-4332(99)00334-7
  • Ramanauskas R, Quintana P, Maldonado L, et al. Corrosion resistance and microstructure of electrodeposited Zn and Zn alloy coatings. Surf. Coatings Technol. 1997;92(1–2):16–21. doi:10.1016/S0257-8972(96)03125-8
  • Liu M, Qiu D, Zhao M, et al. The effect of crystallographic orientation on the active corrosion of pure magnesium. Scr Mater. 2008;58:421–424. doi:10.1016/j.scriptamat.2007.10.027