Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 58, 2023 - Issue 8
130
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Corrosion behaviour of heterogeneous antimony-copper layers in chloride media

ORCID Icon &
Pages 677-686 | Received 23 Nov 2022, Accepted 09 Aug 2023, Published online: 17 Aug 2023

References

  • Dardeniz G. Why did the use of antimony-bearing alloys in bronze age anatolia fall dormant after the early bronze age?: a case from resuloğlu (Cё orum, Turkey). PLoS ONE 2020; 15(7):e0234563, doi:10.1371/journal.pone.0234563
  • Kuijpers MHG, Braekmans D, Berger D. Quantitative comparisons of the color of CuAs, CuAs, CuNi, and CuSb alloys. J Archaeol Sci. 2017;88:14–23. doi:10.1016/j.jas.2017.09.001
  • Sandana YN, Singh JP, Kumar R. Electrodeposion of antimony and antimony and antimony alloys – a review. Surf Techn. 1985;24:319–353. doi:10.1016/0376-4583(85)90053-6
  • Jackson ED, Mosby JM, Prieto AL. Evaluation of the electrochemical properties of crystalline copper antimonide thin film anodes for lithium ion batteries produced by single step electrodeposition. Electrochim Acta. 2016;214:253–264. doi:10.1016/j.electacta.2016.07.126
  • Zhang C, Xu K-Q, Zhou W, et al. Copper–antimony alloy–nanoparticle clusters supported on porous cu networks for electrochemical energy storage. Part Part Syst Charact. 2016;33:553–559. doi:10.1002/ppsc.201500198
  • Schulze MC, Schulze RK, Prieto AL. Electrodeposited thin-film CuxSb anodes for Li-ion batteries: enhancement of cycle life via tuning of film composition and engineering of the film-substrate interface. J Mater Chem A. 2018;6:12708–12717. doi:10.1039/C8TA01798K
  • Arpacık M, Biçer M, Şişman İ. Influence of microstructure on the electrochemical performance of Sn-Sb-Cu nanostructures as anode materials for lithium-ion battery. J Electrochem Soc. 2013;160:A2251–A2257. doi:10.1149/2.100311jes
  • Baggetto L, Allcorn E, Manthiram A, et al. Cu2Sb thin films as anode for Na-ion batteries. Electrochem Commun. 2013;27:168–171. doi:10.1016/j.elecom.2012.11.030
  • He Y, Sun W. Carbon-coated SbCu alloy nanoparticles for high performance lithium storage. J Alloys Compd. 2018;753:371–377. doi:10.1016/j.jallcom.2018.04.183
  • Park JY, Shim Y, Dao KP, et al. Non-Equilibrium sodiation pathway of CuSbS2. ACS Nano. 2021;15(11):17472–17479. doi:10.1021/acsnano.1c03839
  • Wang W, Zhi G, Liu L, et al. Preparation of rod-like CuSbS2 particles by soft-template synthesis and electrochemical performance toward lithium storage. J Nanopart Res. 2022;24; doi:10.1007/s11051-022-05481-9
  • Khairy M, Jiang P, Boulet P, et al. Electron density and optoelectronic properties of copper antimony sulphur ternary compounds for photovoltaic applications. J Electron Mater. 2022;51:3903–3918. doi:10.1007/s11664-022-09650-3
  • Moujoud S, Hartiti B, Touhtouh S, et al. Efficiency enhancement by simulation method of copper antimony disulfide thin film based solar cells. Mater Today Commun. 2022;31:103415, doi:10.1016/j.mtcomm.2022.103415
  • Aimei Z, Yanping W, Bing L, et al. Sulfurization of electrodeposited Sb/Cu precursors for CuSbS2: potential absorber materials for thin-film solar cells. Front Mater. 2022;8:818596, doi:10.3389/fmats.2021.818596
  • Penezko A, Kauk-Kuusik M, Volobujeva O, et al. Properties of Cu-Sb-Se thin films deposited by magnetron co-sputtering for solar cell applications. Thin Solid Films. 2021;740:139004, doi:10.1016/j.tsf.2021.139004
  • Zaki SA, Abd-Elrahman MI, Abu-Sehly AA, et al. Solar cell fabrication from semiconducting Cu3SbS3 on n-Si: parameters evolution. Mater Sci Semicond Proc. 2020;115:105123, doi:10.1016/j.mssp.2020.105123
  • Oubakalla M, Beraich M, Taibi M, et al. The choice of the copper concentration favoring the production of stoichiometric CuSbS2 and Cu12Sb4S13 thin films co-electrodeposited on FTO. J Alloys Compd. 2022;908:164618, doi:10.1016/j.jallcom.2022.164618
  • Wikstrom LL, Nobe K. Potentiodynamic studies of antimony in acidic and alkaline solutions. Corrosion. 1975;31:364–369. doi:10.5006/0010-9312-31.10.364
  • Pavlov D, Bojinov M, Laitinen T, et al. Electrochemical behaviour of the antimony electrode in sulphuric acid solutions – I. Corrosion processes and anodic dissolution of antimony. Electrochim Acta. 1991;36:2081–2086. doi:10.1016/0013-4686(91)85213-Q
  • Pavlov D, Bojinov M, Laitinen T, et al. Electrochemical behaviour of the antimony electrode in sulphuric acid solutions – II. Formation and properties of the primary anodic layer. Electrochim Acta. 1991;36:2087–2092. doi:10.1016/0013-4686(91)85214-R
  • Glab S, Edwall G, Jöngren P-A, et al. Cyclic voltammetric studies on a monocrystalline antimony electrode. Electrochim Acta. 1982;27:581–586. doi:10.1016/0013-4686(82)85043-3
  • Liu Y, Liu H, Yao Z, et al. Fabrication, improved performance, and response mechanism of binary Ag-Sb alloy pH electrodes. Electrochim Acta. 2020;337:135746, doi:10.1016/j.electacta.2020.135746
  • Tapia MA, Pérez-Ràfols C, Paštika J, et al. Antimony nanomaterials modified screen-printed electrodes for the voltammetric determination of metal ions. Electrochim Acta. 2022;425:140690, doi:10.1016/j.electacta.2022.140690
  • Maczuga M, Economou A, Bobrowski A, et al. Novel screen-printed antimony and tin voltammetric sensors foranodic stripping detection of Pb(II) and Cd(II). Electrochim Acta. 2013;114:758–765. doi:10.1016/j.electacta.2013.10.075
  • Izquierdo J, Nagy L, Varga Á, et al. Spatially resolved measurement of electrochemical activity and pH distributions in corrosion processes by scanning electrochemical microscopy using antimony microelectrode tips. Electrochim Acta. 2011;56:8846–8850. doi:10.1016/j.electacta.2011.07.076
  • Bojinov M, Pavlov D. Anodic oxidation of antimony at high overpotentials - formation of a barrier layer and klebelsbergite. J Electroanal Chem. 1993;346:339–352. doi:10.1016/0022-0728(93)85023-A
  • Laitinen L, Revitzer H, Sundholm G, et al. Electrochemical behaviour of the antimony electrode in sulphuric acid solutions—III. identification of corrosion products after long-term polarization. Electrochim Acta. 1991;36:2093–2102. doi:10.1016/0013-4686(91)85215-S
  • Mogoda AS, Abd EI-Haleem TM. Electrochemical behavior of antimony in sulfuric acid and sodium sulfate solutions containing potassium dichromate. Corrosion. 2003;59:3–10. doi:10.5006/1.3277534
  • Ito CR, Nobe K. Chloride ion effects in the corrosion kinetics of intermetallics in acidic solutions. ECS Transaction. 2009;16:217–226. doi:10.1149/1.3229969
  • Soltis J, Lichti KA. Galvanic corrosion of carbon steel coupled to antimony. Corr Sci. 2013;68:162–167. doi:10.1016/j.corsci.2012.11.008
  • Gulevskii VA, Antipov VI, Vinogradov LV, et al. Development of antimony_based impregnating alloys to produce electrographite frame composite materials. Russ Metall. 2011;2011:78–84. doi:10.1134/S0036029511010095
  • Wu BY, Liang W, Wang AH. Compositional design of low carbon sulphuric acid dewpoint corrosion resistant steel and corresponding anticorrosive mechanism. Corros Eng Sci Technol. 2013;48:313–320. doi:10.1179/1743278212Y.0000000071
  • Lins VFC, Soares RB, Alvarenga EA. Corrosion behaviour of experimental copper–antimony–molybdenum carbon steels in industrial and marine atmospheres and in a sulphuric acid aqueous solution. Corros Eng Sci Technol. 2017;52:397–403. doi:10.1080/1478422X.2017.1305537
  • Dias M, Verissimo NC, Regone NN, et al. Electrochemical corrosion behaviour of Sn–Sb solder alloys: the roles of alloy Sb content and type of intermetallic compound. Corros Eng Sci Technol. 2021;56:11–21. doi:10.1080/1478422X.2020.1791446
  • Kostov V, Dobrovolska T. Structure formation and multilayering in electrodeposited copper-antimony alloy. Port Electrochim Acta. 2023;41, 335–346. (in press). doi:10.4152/pea.2023410502
  • Chen X, Qian H, Lou Y, et al. Effects of Cu-content and passivation treatment on the corrosion resistance of Al0.3CuxCoCrFeNi high-entropy alloys. J Alloys Compd. 2022;920:165956, doi:10.1016/j.jallcom.2022.165956
  • Fürtauer S, Flandorfer H. A new experimental phase diagram investigation of Cu–Sb. Monatsh Chem. 2012;143:1275–1287. doi:10.1007/s00706-012-0737-1
  • Estrada-Vargas A, Casillas N, Gomez-Salazar S, et al. Corrosion of aluminum, copper, brass and stainless steel 304 in tequila. Int J Electrochem Sci. 2012;7:7877–7887. doi:10.1016/S1452-3981(23)17961-2
  • Bacelis Á, Veleva L, Alpuche-Avilés MA. Copper corrosion behavior in simulated concrete-pore solutions. Metals (Basel). 2020;10:474, doi:10.3390/met10040474
  • Naseer A., Khan A.Y. A study of growth and breakdown of passive film on copper surface by electrochemical impedance spectroscopy. Turk J Chem. 2009;33:739–750. doi:10.3906/kim-0708-23
  • El-Azazy M, Min M, Annus P. Electrochemical impedance spectroscopy. London: IntechOpen; 2020; doi: 10.5772/intechopen.87884.
  • Laschuk NO, Bradley Easton E, Zenkina OV. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv. 2021;11:27925–27936. doi:10.1039/D1RA03785D
  • Manhabosco TM, Tamborim SM, dos Santos CB, et al. Tribological, electrochemical and tribo-electrochemical characterization of bare and nitrided Ti6Al4V in simulated body fluid solution. Corr Sci. 2011;53:1786–1793. doi:10.1016/j.corsci.2011.01.057
  • Gao P, Zhang C, Wen G. Equivalent circuit model analysis on electrochemical impedance spectroscopy of lithium metal batteries. J Power Sources. 2015;294:67–74. doi:10.1016/j.jpowsour.2015.06.032
  • Nikitina VA, Zakharkin MV, Vassiliev SY, et al. Lithium ion coupled electron-transfer rates in superconcentrated electrolytes: exploring the bottlenecks for fast charge-transfer rates with LiMn2O4 cathode materials. Langmuir. 2017;33:9378–9389. doi:10.1021/acs.langmuir.7b01016
  • Brett CMA. Electrochemical impedance spectroscopy in the characterisation and application of modified electrodes for electrochemical sensors and biosensors. Molecules. 2022;27:1497, doi:10.3390/molecules27051497
  • Braithwaite L, Albrechtas K, Zagidulin D, et al. Galvanic coupling of copper and carbon steel in the presence of bentonite clay and chloride. J Electrochem Soc. 2022;169:051502, doi:10.1149/1945-7111/ac5ff2
  • Kim C-H, Pyun S-I, Kim J-H. An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations. Electrochim Acta. 2003;48:3455–3463. doi:10.1016/S0013-4686(03)00464-X
  • Cao F, Wei J, Dong J, et al. The corrosion inhibition effect of phytic acid on 20SiMn steel in simulated carbonated concrete pore solution. Corros Sci. 2015;100:365–376. doi:10.1016/j.corsci.2015.08.020
  • Multani RS, Feldmann T, Demopoulos GP. Antimony in the metallurgical industry: a review of its chemistry and environmental stabilization options. Hydrometallurgy. 2016;164:141–153. doi:10.1016/j.hydromet.2016.06.014
  • Luo W, Zhou J, Xu Y, et al. Preparation and electrochemical corrosion behaviour of 3D large-sized nanocrystalline copper bulk in solutions with chloride ions. Corros Eng Sci Technol. 2019;54:541–545. doi:10.1080/1478422X.2019.1636176
  • Pérez OE, Pérez MA, Teijelo ML. Characterization of the anodic growth and dissolution of antimony oxide films. J Electroanal Chem. 2009;632:64–71. doi:10.1016/j.jelechem.2009.03.018
  • He Y, Xu R, He S, et al. Effect of NaNO3 concentration on anodic electrochemical behavior on the Sb surface in NaOH solution. Int J Miner Metall Mater. 2018;25:288–299. doi:10.1007/s12613-018-1572-0
  • Haynes WM. CRC handbook of chemistry and physics. 95th ed. Boca Raton (FL): CRC Press LLC; 2014-2015; p. 4-48 and p. 4-61.
  • Girginov C, Lilov E, Kozhukharov S, et al. Efficiency of the galvanostatic formation of anodic antimony oxide in oxalic acid solutions. Port Electrochim Acta. 2022;40:89–98. doi:10.4152/pea.2022400203
  • Veys-Renaux D, Drevet R, Petitjean C, et al. Electrochemical behavior of CoSb3 in sulfuric and oxalic acids over the potential range 0 to 40 V. J Solid State Electrochem. 2018;22:2821–2828. doi:10.1007/s10008-018-3990-3
  • Mogoda AS, Abd El-Haleem TM. Anodic oxide film formation on antimony and its currentless dissolution in sulphuric acid containing some monocarboxylic acids. Thin Solid Films. 2003;441:6–12. doi:10.1016/S0040-6090(03)00876-9
  • Schmuki P, Santinacci L, Lockwood DJ, et al. Formation of porous layers on InSb(100) by anodization. Phys Status Solidi (A) Appl. Res. 2003;197:71–76. doi:10.1002/pssa.200306470

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.