Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 58, 2023 - Issue 8
67
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Depth profiles of akaganéite, goethite and maghemite on A1010, HPS and weathering steel panels after wet-dry corrosion tests

Pages 687-695 | Received 07 Apr 2022, Accepted 09 Aug 2023, Published online: 07 Sep 2023

References

  • Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century. Corros Sci 1994;36:283–299.
  • Townsend HE, Simpson TC, Johnson GL. Structure of rust on weathering steel in rural and industrial environments. Corros Sci 1994;50:546–554.
  • Oh SJ, Cook DC, Townsend HE. Atmospheric corrosion of different steels in marine, rural and industrial environments. Corros Sci 1999;41:1687–1702.
  • Kamimura T, Stratmann M. The influence of chromium on the atmospheric corrosion of steel. Corros Sci 2001;43:429–447.
  • Kamimura T, Nasu S, Tazaki T, et al. Mössbauer spectroscopic study of rust formed on a weathering steel and a mild steel exposed for a long term in an industrial environment. Mater Trans 2002;43:694–703.
  • Yamashita M, Uchida H. Recent research and development in solving atmospheric corrosion problems of steel industries in Japan. Hyperfine Interact. 2002;139-140:153–166.
  • Zhang Q, Wu J, Zheng W, et al. Characterization of rust layer formed on low alloy steel exposed in marine atmosphere. J Mater Sci Techn. 2002;18:455–458.
  • Cook DC. Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments. Corros Sci 2005;47:2550–2570.
  • García KE, Morales AL, Barrero CA, et al. On the rust products formed on weathering and carbon steels exposed to chloride in dry-wet cyclical processes. Hyperfine Interact. 2005;161:127–137. doi:10.1007/s10751-005-9175-3
  • García KE, Morales AL, Barrero CA, et al. New contributions to the understanding of rust layer formation in steels exposed to a total immersion test. Corros Sci 2006;48:2813–2830.
  • Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments. Corros Sci 2006;48:2799–2812.
  • Coomarasamy A, Lai D, Pianca F, et al. Analysis of corrosion products formed on some of Ontario's weathering steel bridges. Corrosion. 2008: NACE-8199.
  • Coomarasamy A, Lai D, Ramamurthy S, et al. Effect of low alloy steel powder-ethyl silicate-based coatings on corrosion behaviour of weathering steel exposed to salt environment. Corrosion. 2010: NACE-10389.
  • Wang Z, Liu J, Wu L, et al. Study of the corrosion behaviour of weathering steel in atmospheric environments. Corros Sci 2013;67:1–10.
  • Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review. Corros Sci 2013;77:6–24.
  • Morcillo M, Díaz I, Chico B, et al. Weathering steel: from empirical development to scientific design. Corros Sci 2014;83:6–31.
  • Morcillo M, González-Calbet JM, Jiménez JA, et al. Environmental conditions for akaganéite formation in marine atmosphere mild steel corrosion products and its characterization. Corrosion. 2015;71:872–886. doi:10.5006/1672
  • Chico B, Alcántara J, Pino E, et al. Rust exfoliation on carbon steels in chloride-rich atmospheres. Corros Rev 2015;33:263–282.
  • Watkinson DE, Rimmer MB, Emmerson NJ. The influence of relative humidity and intrinsic chloride on post-excavation corrosion rates of archaeological wrought iron. Stud Conserv 2019;64:456–471.
  • Oyabu M, Nomura K, Koike Y, et al. Mössbauer and XRD analysis of corrosion products on weathering steel treated by wet-dry cycles using various solutions. Hyperfine Interact. 2016;237:68–74. doi:10.1007/s10751-016-1244-2
  • de la Fuente D, Alcántara J, Chico B, et al. Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques. Corros Sci 2016;110:253–264.
  • de la Fuente D, Díaz I, Alcántara J, et al. Corrosion mechanisms of mild steel in chloride-rich atmospheres. Mater Corros 2016;67:227–238.
  • Morcillo M, Chico B, de la Fuente D, et al. On the mechanism of rust exfoliation in marine environments. J Electrochem Soc. 2017;164:C8–C16. doi:10.1149/2.0131702jes
  • Alcántara J, de la Fuente D, Chico B, et al. Marine atmospheric corrosion of carbon steel: a review. Materials (Basel). 2017;10:406. doi:10.3390/ma10040406
  • Calero J, Alcántara J, Chico B, et al. Wet/dry accelerated laboratory test to simulate the formation of multilayered rust on carbon steel in marine atmospheres. Corros Eng Sci Techn. 2017;52:178–187.
  • Xiao H, Ye W, Song X, et al. Determination of the key parameters involved in the formation process of akaganéite in a laboratory-simulated wet-dry cyclic process. Corros Sci 2017;128:130–139.
  • Xiao H, Ye W, Song X, et al. Formation process of akaganéite in the simulated wet-dry cycles atmospheric environment. J Mater Sci Techn. 2018;34:1387–1396. doi:10.1016/j.jmst.2017.06.020
  • Cano H, Díaz I, de la Fuente D, et al. Effect of Cu, Cr and Ni alloying elements on mechanical properties and atmospheric corrosion resistance of weathering steels in marine atmospheres of different aggressivities. Mater Corros 2018;69:8–19.
  • Morcillo M, Díaz I, Cano H, et al. Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts. Const Build Mater. 2019;213:723–737. doi:10.1016/j.conbuildmat.2019.03.334
  • Fan Y, Liu W, Li S, et al. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion. J Mater Sci Technol. 2020;39:190–199. doi:10.1016/j.jmst.2019.07.054
  • Oh SJ, Cook DC, Townsend HE. Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact. 1998;112:59–66. doi:10.1023/A:1011076308501
  • Murad E. Mössbauer and X-ray data on β-FeOOH (akaganéite). Clay Miner. 1979;14:273–283. doi:10.1180/claymin.1979.014.4.04
  • da Costa GM, De Grave E, Bowen LH, et al. Temperature dependence of the hyperfine parameters of maghemite and Al-substituted maghemites. Phys Chem Miner. 1995;22:178–185. doi:10.1007/BF00202298
  • Childs CW, Goodman BA, Paterson E, et al. The nature of iron in akaganéite (β-FeOOH). Aus J Chem. 1980;33:15–26. doi:10.1071/CH9800015
  • Chambaere DG, De Grave E. On the influence of the dual iron co-ordination on the hyperfine field in β-FeOOH. J Magn Magn Mater. 1984;44:349–352. doi:10.1016/0304-8853(84)90263-4
  • Chambaere DG, De Grave E. A study of the non-stoichiometrical halogen and water content of β-FeOOH. Phys Stat Sol. 1984;83:93–102. doi:10.1002/pssa.2210830109
  • Murad E, Johnston JH. Iron oxides and oxyhydroxides. In: GJ Long, editor. Mössbauer spectroscopy applied to inorganic chemistry. New York: Plenum; 1987. p. 507–582.
  • Rézel D, Génin JMR. The substitution of chloride ions to OH−-ions in the akaganéite beta ferric oxyhydroxide studied by Mössbauer effect. Hyperfine Interact. 1990;57:2067–2076. doi:10.1007/BF02405765
  • Pollard RJ, Cardile CM, Lewis DG, et al. Characterization of FeOOH polymorphs and ferrihydrite using low-temperature, applied-field, Mössbauer spectroscopy. Clay Miner. 1992;27:57–71. doi:10.1180/claymin.1992.027.1.06
  • Cook DC. Application of Mössbauer spectroscopy to the study of corrosion. Hyperfine Interact. 2004;153:61–82. doi:10.1023/B:HYPE.0000024714.84742.fd
  • Cook DC, Oh SJ, Balasubramanian R, et al. The role of goethite in the formation of the protective corrosion layer on steels. Hyperfine Interact. 1999;122:59–70. doi:10.1023/A:1012685320582
  • García KE, Morales AL, Arroyave CE, et al. Mössbauer characterization of rust obtained in an accelerated corrosion test. Hyperfine Interact. 2003;48-49:177–183.
  • Barrero CA, García KE, Morales AL, et al. New analysis of the Mössbauer spectra of akaganéite. J Phys Condens Matter. 2006;18:6827–6840. doi:10.1088/0953-8984/18/29/020
  • Schwertmann U, Murad E. Effect of pH on the formation of goethite and hematite from ferrihydrite, Clay. Clay Miner. 1983;31:277–284. doi:10.1346/CCMN.1983.0310405
  • Ishikawa T, Kumagai M, Yasukawa A, et al. Influences of metal ions on the formation of γ-FeOOH and magnetite rusts. Corros Sci 2002;44:1073–1086.
  • Balasubramanian R, Cook DC, Yamashita M. Magnetic relaxation in nano-phase chromium substituted goethite. Hyperfine Interact. 2002;139/140:167–173. doi:10.1023/A:1021250405080
  • Balasubramanian R, Cook DC, Townsend H. Transmission Mössbauer analysis of nanophased oxides formed on high strength steels. Hyperfine Interact. 2002;141:369–379. doi:10.1023/A:1021247828279
  • Betancur JD, Barrero CA, Greneche JM, et al. The effect of water content on the magnetic and structural properties of goethite. J Alloy Compds. 2004;369:247–251. doi:10.1016/j.jallcom.2003.09.046
  • Buchwald VF, Clarke RS. Corrosion of Fe-Ni alloys by Cl-containing akaganéite (β-FeOOH): the Antarctic meteorite case. Am Mineral 1989;74:656–667.
  • Townsend HE. Effects of alloying elements on the corrosion of steel in industrial atmospheres. Corrosion. 2001;57:497–501. doi:10.5006/1.3290374
  • Kimura M, Kihira H, Ohta N, et al. Control of Fe(O,OH)6 nano-network structures of rust for high atmospheric-corrosion resistance. Corros Sci 2005;47:2499–2509.
  • Ocampo LM, Mattos COR, Margarit-Mattos ICP, et al. Influence of Cu and Ni on the morphology and composition of the rust layer of steels exposed to industrial environment. Hyperfine Interact. 2006;167:739–746. doi:10.1007/s10751-006-9350-1
  • Refait P, Génin JMR. The mechanisms of oxidation of ferrous hydroxychloride β-Fe2(OH)3Cl in aqueous solution: The formation of akaganéite vs goethite. Corros Sci. 1997;39:539–553. doi:10.1016/S0010-938X(97)86102-1
  • Nishimura T, Katayama H, Noda K, et al. Electrochemical behaviour of rust formed on carbon steel in a wet/dry environment containing chloride ions. Corrosion. 2000;56:935–941. doi:10.5006/1.3280597
  • Ishikawa T, Katoh R, Yasukawa A, et al. Influences of metal ions on the formation of β-FeOOH particles. Corros Sci 2001;43:1727–1738.
  • Lee SH, Lee I, Roh Y. Biomineralization of a poorly crystalline Fe(III) oxide, akaganéite, by an anaerobic Fe(III)-reducing bacterium (Shewanella alga) isolated from marine environment. Geosci. J. 2003;7:217–226.
  • Cornell RM, Schwertmann U. The iron oxides: structure, properties, reactions, occurrences and uses. 2nd ed. Wiley; 2003.
  • Ståhl K, Nielsen K, Jiang J, et al. On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts. Corros Sci 2003;45:2563–2575.
  • Kamimura T, Nasu S, Segi T, et al. Influence of cations and anions on the formation of β-FeOOH. Corros Sci 2005;47:2531–2542.
  • Ishikawa T, Miyamoto S, Kandori K, et al. Influence of anions on the formation of β-FeOOH rusts. Corros Sci 2005;47:2510–2520.
  • Kwon SK, Suzuki S, Saito M, et al. Atomic-scale structure of β-FeOOH containing chromium by anomalous X-ray scattering coupled with reverse Monte Carlo simulation. Corros Sci 2006;48:1571–1584.
  • Scheck J, Lemke T, Gebauer D. The role of chloride ions during the formation of akaganéite revisited. Minerals. 2015;5:778–787. doi:10.3390/min5040524
  • Rémazeilles C, Refait P. On the formation of β-FeOOH (akaganéite) in chloride-containing environments. Corros Sci 2007;49:844–857.
  • Ramamurthy S, Shoesmith DW, Coomarasamy A, et al. Improving the corrosion resistance of weathering steel bridges, 224-th Meet [abstract]. Electrochem Soc. 2013: 1734.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.