Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 58, 2023 - Issue 8
96
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of pH on corrosion behaviour of CoCrNi MEA imposed by alternating current in Na2CO3/NaHCO3 solution

, , , &
Pages 696-711 | Received 30 Jun 2023, Accepted 10 Aug 2023, Published online: 23 Aug 2023

References

  • Dong BJ, Liu W, Zhang TY, et al. Corrosion failure analysis of low alloy steel and carbon steel rebar in tropical marine atmospheric environment: outdoor exposure and indoor test. Eng Fail Anal. 2021;129:105720. doi:10.1016/j.engfailanal.2021.105720
  • Liu ZY, Li Q, Cui ZY, et al. Field experiment of stress corrosion cracking behavior of high strength pipeline steels in typical soil environments. Constr Build Mater. 2017;148:131–139. doi:10.1016/j.conbuildmat.2017.05.058
  • Liang Y, Du YX, Chen L, et al. AC corrosion behavior and the effect of stone-hard-soil on corrosion process in the earth alkaline rich environment. Eng Fail Anal. 2022;135:106112. doi:10.1016/j.engfailanal.2022.106112
  • Yeh JW, Lin SJ, Chin TS, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall Mater Trans A. 2004;35:2533–2536. doi:10.1007/s11661-006-0234-4
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375-377:213–218. doi:10.1016/j.msea.2003.10.257
  • Sathiyamoorthi P, Kim HS. High-entropy alloys with heterogeneous microstructure: processing and mechanical properties. Prog Mater Sci. 2022;123:100709. doi:10.1016/j.pmatsci.2020.100709
  • Bachani SK, Wang CJ, Lou BS, et al. Fabrication of TiZrNbTaFeN high-entropy alloys coatings by HiPIMS: effect of nitrogen flow rate on the microstructural development, mechanical and tribological performance, electrical properties and corrosion characteristics. J Alloy Compd. 2021;873:159605. doi:10.1016/j.jallcom.2021.159605
  • Xi YZ, Yang XF, Yin XL, et al. Simultaneous strengthening effect of local chemical ordering and twin boundary on the medium entropy alloy CoCrNi. J Alloy Compd. 2023;935:168093. doi:10.1016/j.jallcom.2022.168093
  • Cui Y, Shen JQ, Manladan SM, et al. Wear resistance of FeCoCrNiMnAlx high-entropy alloy coatings at high temperature. Appl Surf Sci. 2020;512:145736. doi:10.1016/j.apsusc.2020.145736
  • Hsu CY, Sheu TS, Yeh JW, et al. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear. 2010;268:653–659. doi:10.1016/j.wear.2009.10.013
  • Zhao PC, Guan B, Tong YG, et al. A quasi-in-situ EBSD study of the thermal stability and grain growth mechanisms of CoCrNi medium entropy alloy with gradient-nanograined structure. J Mater Sci Technol. 2022;109:54–63. doi:10.1016/j.jmst.2021.07.054
  • Zhang YT, Liu MW, Sun JY, et al. Excellent thermal stability and mechanical properties of bulk nanostructured FeCoNiCu high entropy alloy. Mat Sci Eng A-Struct. 2022;835:142670. doi:10.1016/j.msea.2022.142670
  • Wang JY, Zou JP, Yang HL, et al. Strength improvement of CoCrNi medium-entropy alloy through introducing lattice defects in refined grains. Mater Charact. 2022;193:112254. doi:10.1016/j.matchar.2022.112254
  • An N, Sun YN, Gao L, et al. Long-term structural stability and excellent mechanical properties of CoCrNi system medium entropy alloys. J Alloy Compd. 2022;914:165206. doi:10.1016/j.jallcom.2022.165206
  • Hua DP, Liu XR, Wang W, et al. Formation mechanism of hierarchical twins in the CoCrNi medium entropy alloy. J Mater Sci Technol. 2023;140:19–32. doi:10.1016/j.jmst.2022.08.033
  • Feng H, Li HB, Wu XL, et al. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy. J Mater Sci Technol. 2018;34:1781–1790. doi:10.1016/j.jmst.2018.03.021
  • Feng K, Zhang Y, Li ZG, et al. Corrosion properties of laser cladded CrCoNi medium entropy alloy coating. Surf Coat Technol. 2020;397:126004. doi:10.1016/j.surfcoat.2020.126004
  • Wang JY, Li WH, Yang HL, et al. Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steel in H2SO4 and NaOH solutions. Corros Sci. 2020;177:108973. doi:10.1016/j.corsci.2020.108973
  • Weng F, Chew YX, Ong WK, et al. Enhanced corrosion resistance of laser aided additive manufactured CoCrNi medium entropy alloys with oxide inclusion. Corros Sci. 2022;195:109965. doi:10.1016/j.corsci.2021.109965
  • Moravcik I, Peighambardoust NS, Motallebzadeh A, et al. Interstitial nitrogen enhances corrosion resistance of an equiatomic CoCrNi medium-entropy alloy in sulfuric acid solution. Mater Charact. 2021;172:110869. doi:10.1016/j.matchar.2020.110869
  • Wang JY, Yang HL, Ruan JM, et al. Microstructure and properties of CoCrNi medium-entropy alloy produced by gas atomization and spark plasma sintering. J Mater Res. 2019;34:2126–2136. doi:10.1557/jmr.2019.96
  • Xu LY, Su X, Cheng YF. Effect of alternating current on cathodic protection on pipelines. Corros Sci. 2013;66:263–268. doi:10.1016/j.corsci.2012.09.028
  • Brenna A, Beretta S, Bolzoni F, et al. Effects of AC-interference on chloride-induced corrosion of reinforced concrete. Constr Build Mater. 2017;137:76–84. doi:10.1016/j.conbuildmat.2017.01.087
  • Wang HR, Du CW, Liu ZY, et al. Effect of alternating current on the cathodic protection and interface structure of X80 steel. Materials (Basel). 2017;10:851. doi:10.3390/ma10080851
  • Tang KK. Stray alternating current (AC) induced corrosion of steel fibre reinforced concrete. Corros Sci. 2019;152:153–171. doi:10.1016/j.corsci.2019.02.006
  • Li Z, Wan HX, Song DD, et al. Corrosion behavior of X80 pipeline steel in the presence of brevibacterium halotolerans in Beijing soil. Bioelectrochemistry. 2019;126:121–129. doi:10.1016/j.bioelechem.2018.12.001
  • Arzaghi E, Chia BH, Abaei MM, et al. Pitting corrosion modelling of X80 steel utilized in offshore petroleum pipelines. Process Saf Environ. 2020;141:135–139. doi:10.1016/j.psep.2020.05.024
  • Huang XG, Zhou LC, Li YK, et al. The synergistic effect of temperature, H2S/CO2 partial pressure and stress toward corrosion of X80 pipeline steel. Eng Fail Anal. 2023;146:107079. doi:10.1016/j.engfailanal.2023.107079
  • Chen K, Zhao W, Xiao GC, et al. Corrosion characteristics of simulated reheated heat-affected-zone of X80 pipeline steel in carbonate/bicarbonate solution. Corros Sci. 2023;210:110856. doi:10.1016/j.corsci.2022.110856
  • Ryakhovskikh IV, Bogdanov RI, Ignatenko VE. Intergranular stress corrosion cracking of steel gas pipelines in weak alkaline soil electrolytes. Eng Fail Anal. 2018;94:87–95. doi:10.1016/j.engfailanal.2018.07.036
  • Eliyan FF, Alfantazi A. Corrosion of the heat-affected zones (HAZs) of API-X100 pipeline steel in dilute bicarbonate solutions at 90°C - an electrochemical evaluation. Corros Sci. 2013;74:297–307. doi:10.1016/j.corsci.2013.05.003
  • Li Z, Li CY, Qian HC, et al. Corrosion behavior of X80 steel with coupled coating defects under alternating current interference in alkaline environment. Materials (Basel). 2017;10:720. doi:10.3390/ma10070720
  • Zhu M, Zhang CL, Yuan YF, et al. The corrosion behavior of CoCrNi medium entropy alloy with alternating current interference in carbonate/bicarbonate solution. J Mater Eng Perform. 2023;32:1–17. doi:10.1007/s11665-022-07059-x
  • Zhu M, Zhao BZ, Yuan YF, et al. Study on corrosion behavior and mechanism of CoCrFeMnNi HEA interfered by AC current in simulated alkaline soil environment. J Electroanal Chem. 2021;882:115026. doi:10.1016/j.jelechem.2021.115026
  • Luo H, Zou SW, Chen YH, et al. Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution. Corros Sci. 2020;163:108287. doi:10.1016/j.corsci.2019.108287
  • Muñoz-Portero MJ, García-Antón J, Guiñón JL, et al. Pourbaix diagrams for chromium in concentrated aqueous lithium bromide solutions at 25 degrees C. Corros Sci. 2009;51:807–819. doi:10.1016/j.corsci.2009.01.004
  • Wang LW, Liang JM, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl-. Corros Sci. 2021;178:109076. doi:10.1016/j.corsci.2020.109076
  • Luo H, Su HZ, Dong CF, et al. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution. Appl Surf Sci. 2017;400:38–48. doi:10.1016/j.apsusc.2016.12.180
  • Zhu M, He F, Yuan YF, et al. A comparative study on the corrosion behavior of CoCrNi medium-entropy alloy and 316L stainless steel in simulated marine environment. Intermetallics. 2021;139:107370. doi:10.1016/j.intermet.2021.107370
  • Wang H, Liu P, Chen XH, et al. Mechanical properties and corrosion resistance characterization of a novel Co36Fe36Cr18Ni10 high-entropy alloy for bioimplants compared to 316L alloy. J Alloy Compd. 2022;906:163947. doi:10.1016/j.jallcom.2022.163947
  • Liu M, Cheng XQ, Li XG, et al. Corrosion behavior of low-Cr steel rebars in alkaline solutions with different pH in the presence of chlorides. J Electroanal Chem. 2017;803:40–50. doi:10.1016/j.jelechem.2017.09.016
  • Liu Q, Ma QX, Chen GQ, et al. Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing. Corros Sci. 2018;138:284–296. doi:10.1016/j.corsci.2018.04.028
  • Araneda AAB, Kappes MA, Rodríguez MA, et al. Pitting corrosion of Ni-Cr-Fe alloys at open circuit potential in chloride plus thiosulfate solutions. Corros Sci. 2022;198:110121. doi:10.1016/j.corsci.2022.110121
  • Gu DD, Zhang H, Dai DH, et al. Anisotropic corrosion behavior of Sc and Zr modified Al-Mg alloy produced by selective laser melting. Corros Sci. 2020;170:108657. doi:10.1016/j.corsci.2020.108657
  • Xu X, Lu HF, Su YY, et al. Comparing corrosion behavior of additively manufactured Cr-rich stainless steel coating between conventional and extreme high-speed laser metal deposition. Corros Sci. 2022;195:109976. doi:10.1016/j.corsci.2021.109976
  • Xu LY, Su X, Yin ZX, et al. Development of a real-time AC/DC data acquisition technique for studies of AC corrosion of pipelines. Corros Sci. 2012;61:215–223. doi:10.1016/j.corsci.2012.04.038
  • Wang QW, Zhang JX, Gao Y, et al. Galvanic effect and alternating current corrosion of steel in acidic red soil. Metals (Basel). 2022;12:296. doi:10.3390/met12020296
  • Macdonald DD. The history of the point defect model for the passive state: a brief review of film growth aspects. Electrochim Acta. 2011;56:1761–1772. doi:10.1016/j.electacta.2010.11.005
  • Luo H, Gao SJ, Dong CF, et al. Characterization of electrochemical and passive behaviour of alloy 59 in acid solution. Electrochim Acta. 2014;135:412–419. doi:10.1016/j.electacta.2014.04.128
  • Ningshen S, Mudali UK, Mittal VK, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels. Corros Sci. 2007;49:481–496. doi:10.1016/j.corsci.2006.05.041
  • Bai GS, Lu SP, Li DZ, et al. Effects of boron on microstructure and metastable pitting corrosion behavior of super 304H austenitic stainless steel. J Electrochem Soc. 2015;162:473–481.
  • Krakowiak S, Darowicki K, Ślepski P. Impedance of metastable pitting corrosion. J Electroanal Chem. 2005;575:33–38. doi:10.1016/j.jelechem.2004.09.001
  • Li JY, Zhong XK, Wang TG, et al. Synergistic effect of erosion and hydrogen on properties of passive film on 2205 duplex stainless steel. J Mater Sci Technol. 2021;67:1–10. doi:10.1016/j.jmst.2020.08.004
  • Zhu M, Du CW, Li XG, et al. Effect of AC on stress corrosion cracking behavior and mechanism of X80 pipeline steel in carbonate/bicarbonate solution. Corros Sci. 2014;87:224–232. doi:10.1016/j.corsci.2014.06.028
  • Wu W, Pan Y, Liu ZY, et al. Electrochemical and stress corrosion mechanism of submarine pipeline in simulated seawater in presence of different alternating current densities. Materials (Basel). 2018;11:1074. doi:10.3390/ma11071074
  • Liang Y, Du YX, Tang DZ, et al. Research on AC corrosion behavior and corrosion product film evolution of X70 steel under the combined action of AC interference and CP. Corros Sci. 2022;197:110085. doi:10.1016/j.corsci.2022.110085

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.