Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 58, 2023 - Issue 8
66
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of refrigerant absorbent combinations in the corrosion resistance of copper as structural material in absorption refrigeration systems (ARS)

, , , , , & ORCID Icon show all
Pages 787-798 | Received 25 Oct 2022, Accepted 16 Sep 2023, Published online: 28 Sep 2023

References

  • Zolfaghari S, Rabiei Baboukani A, Ashrafi A, et al. Investigation the effects of Na2MoO4 as an inhibitor on electrochemical corrosion behavior of 316L stainless steel in LiBr solution. Zastita Materijala. 2018;59:108–116. doi:10.5937/ZasMat1801110Z
  • Igual Muñoz A, García Antón J, Guiñón JL, et al. Effect of aqueous lithium bromide solutions on the corrosion resistance and galvanic behavior of copper-nickel alloys. Corrosion. 2003;59. doi:10.5006/1.3277533
  • Guiñón J, Prez-Herranz V, Lacoste G, et al. Corrosion of carbon steels, stainless steels, and titanium in aqueous lithium bromide solution. Corrosion. 1994;50:240–246. doi:10.5006/1.3293516
  • Igual Muñoz A, García Antón J, López Nuévalos S, et al. Corrosion studies of austenitic and duplex stainless steels in aqueous lithium bromide solution at different temperatures. Corros Sci. 2004;46:2955–2974. doi:10.1016/j.corsci.2004.05.025
  • Bourouis M, Vallès M, Medrano M, et al. Performance of air-cooled absorption air-conditioning systems working with water-(LiBr + Lil + LiNO3 + LiCl). Proc Inst Mech Eng, Part E: J Process Mech Eng. 2005;219:205–213. doi:10.1243/095440805X8601
  • Itoh M, Itoh K, Izumiya M, et al. Corrosion inhibition of carbon steel by benzotriazole and lithium nitrate in concentrated LiBr-CaCl2 solution at elevated temperature. Zairyo-to-Kankyo. 1991;40:163–168. doi:10.3323/jcorr1991.40.163
  • Tanno K, Itoh M, Sekiya H, et al. The corrosion inhibition of carbon steel in lithium bromide solution by hydroxide and molybdate at moderate temperatures. Corros Sci. 1993;34:1453–1461. doi:10.1016/0010-938X(93)90240-H
  • Cho Y, Han S, Seo H, et al. Corrosion and inhibition process of carbon steel in LiBr-H2O solution. J Mech Sci Technol. 2019;33:2995–3000. doi:10.1007/s12206-019-0549-x
  • Deyab MA, Guibal E. Enhancement of corrosion resistance of the cooling systems in desalination plants by green inhibitor. Sci Rep. 2020;10:4812. doi:10.1038/s41598-020-61810-9
  • Mohammadi Z, Rahsepar M. The use of green Bistorta Officinalis extract for effective inhibition of corrosion and scale formation problems in cooling water system. J Alloys Compd. 2019;770:669–678. doi:10.1016/j.jallcom.2018.08.198
  • Abd Elhamid S, El meleigy A, Attia A, et al. Corrosion behaviour of copper– nickel alloys in LiBr solutions: a comparative study. Egypt J Chem. 2020;63:907–919. doi:10.21608/ejchem.2019.14884.1916
  • Ren J, Qian Z, Yao Z, et al. Thermodynamic evaluation of LiCl-H2O and LiBr-H2O absorption refrigeration systems based on a novel model and algorithm. Energies. 2019;12:3037. doi:10.3390/en12153037
  • Nikbakhti R, Wang X, Hussein AK, et al. Absorption cooling systems – review of various techniques for energy performance enhancement. Alexandria Eng J. 2020;59:707–738. doi:10.1016/j.aej.2020.01.036
  • Luo C. Corrosion of copper in a concentrated LiNO3 solution at a high temperature. Int J Electrochem Sci. 2017;12:1896–1914. doi:10.20964/2017.03.21
  • You C, Briggs S, Orazem ME. An advanced model for long-term localized corrosion of copper. ECS Meet Abstr. 2022;MA2022-02:714. doi:10.1149/MA2022-0211714mtgabs
  • Turnbull J, Szukalo R, Zagidulin D, et al. Nitrite effects on copper corrosion in nitric acid solutions. Corros Sci. 2021;179:109147. doi:10.1016/j.corsci.2020.109147
  • Yasir Abir A, Nizam Uddin SM, Hasan M, et al. Cu-electrodeposited gold electrode for the sensitive electrokinetic investigations of nitrate reduction and detection of the nitrate ion in acidic medium. Res Chem. 2023;5:100702. doi:10.1016/j.rechem.2022.100702
  • Rizvi M, Gerengi H, Kaya S, et al. Sodium nitrite as a corrosion inhibitor of copper in simulated cooling water. Sci Rep. 2021;11:8353. doi:10.1038/s41598-021-87858-9
  • Lee HP, Nobe K. Kinetics and mechanisms of Cu electrodissolution in chloride media. J Electrochem Soc. 1986;133:2035–2043. doi:10.1149/1.2108335
  • da Silva FS, Cinca N, Dosta S, et al. Corrosion resistance and antibacterial properties of copper coating deposited by cold gas spray. Surf Coat Technol. 2019;361:292–301. doi:10.1016/j.surfcoat.2019.01.029
  • Zhu Z, Shi C, Zhang Y, et al. The effects of Cl and direct stray current on soil corrosion of three grounding grid materials. Anti-Corros Methods Mater. 2020;67:73–82. doi:10.1108/ACMM-06-2019-2136
  • Zhao X, Qi Y, Wang J, et al. Effect of cast defects on the corrosion behavior and mechanism of UNS C95810 alloy in artificial seawater. Materials (Basel). 2020. doi:10.3390/ma13071790
  • Sabeti M, Noel JJ, Situm A. Evaluating corrosion behaviour of copper under deliquescent drying/wetting cycles in humid Air condition. ECS Meet Abstr. 2022;MA2022-01:2419. doi:10.1149/MA2022-01172419mtgabs
  • Lopesino P, Alcántara J, De la Fuente D, et al. Corrosion of copper in unpolluted chloride-rich atmospheres. Metals (Basel). 2018;8. doi:10.3390/met8110866
  • Xu W, Zhang B, Deng Y, et al. Nitrate on localized corrosion of carbon steel and stainless steel in aqueous solutions. Electrochim Acta. 2021;369:137660. doi:10.1016/j.electacta.2020.137660
  • Zomorodian A, Bagonyi R, Al-Tabbaa A. The efficiency of eco-friendly corrosion inhibitors in protecting steel reinforcement. J Build Eng. 2021;38:102171. doi:10.1016/j.jobe.2021.102171
  • Varvara S, Dorneanu SA, Okos A, et al. Dissolution of metals in different bromide-based systems: electrochemical measurements and spectroscopic investigations. Materials (Basel). 2020;13. doi:10.3390/ma13163630
  • Dhouibi I, Masmoudi F, Bouaziz M, et al. A study of the anti-corrosive effects of essential oils of rosemary and myrtle for copper corrosion in chloride media. Arab J Chem. 2021;14:102961. doi:10.1016/j.arabjc.2020.102961
  • Kong D-c, Dong C-f, Xiao K, et al. Effect of temperature on copper corrosion in high-level nuclear waste environment. Trans Nonferr Metals Soc China. 2017;27:1431–1438. doi:10.1016/S1003-6326(17)60165-1
  • Ren SJ, Charles J, Wang XC, et al. Corrosion testing of metals in contact with calcium chloride hexahydrate used for thermal energy storage. Mater Corros. 2017;68:1046–1056. doi:10.1002/maco.201709432
  • Benedeti AV, Sumodjo PTA, Nobe K, et al. Electrochemical studies of copper, copper-aluminium and copper-aluminium-silver alloys: impedance results in 0.5M NaCl. Electrochim Acta. 1995;40:2657–2668. doi:10.1016/0013-4686(95)00108-Q
  • Fernández-Domene RM, Blasco-Tamarit E, García-García DM, et al. Thermogalvanic effects on the corrosion of copper in heavy brine LiBr solutions. Corros Sci. 2012;63:304–315. doi:10.1016/j.corsci.2012.06.012
  • Li W, Hu L, Zhang S, et al. Effects of two fungicides on the corrosion resistance of copper in 3.5% NaCl solution under various conditions. Corros Sci. 2011;53:735–745. doi:10.1016/j.corsci.2010.11.006
  • Mori K, Yamakawa Y, Oue S, et al. Effect of impurity ions and additives in solution of copper electrorefining on the passivation behavior of low-grade copper anode. Mater Trans. 2023;64:242–251. doi:10.2320/matertrans.MT-M2022087
  • Parangusan H, Bhadra J, Al-Thani N. A review of passivity breakdown on metal surfaces: influence of chloride- and sulfide-ion concentrations, temperature, and pH. Emerg Mater. 2021;4:1187–1203. doi:10.1007/s42247-021-00194-6
  • Zhu Y, Zhang J, Wang C, et al. Effects of chloride ions and nitrate ions on the anodic dissolution of iron in sulfuric acid solution. Metals (Basel). 2020. doi:10.3390/met10091118
  • Li Y, Li N, Luo C, et al. Thermodynamic performance of a double-effect absorption refrigeration cycle based on a ternary working pair: lithium bromide + ionic liquids + water. Energies. 2019. doi:10.3390/en12214200
  • Scendo M, Uznanska J. The effect of ionic liquids on the corrosion inhibition of copper in acidic chloride solutions. Int J Corros. 2011;2011:718626. doi:10.1155/2011/718626
  • Kozlica DK, Ekar J, Kovač J, et al. Roles of chloride ions in the formation of corrosion protective films on copper. J Electrochem Soc. 2021;168:031504. doi:10.1149/1945-7111/abe34a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.