Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 58, 2023 - Issue 8
164
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

An overview of progresses and challenges of electrochemically integrated multi-electrode arrays for probing localised corrosion in complex environmental conditions

Pages 819-837 | Received 19 Jun 2023, Accepted 19 Sep 2023, Published online: 29 Sep 2023

References

  • Tan MYJ. A critical overview of monitoring infrastructural health using corrosion probes. Corros Eng Sci Techn. 2020;55:103–117. doi:10.1080/1478422X.2019.1695390
  • Tan MYJ. Localised corrosion in complex environments. Hoboken: John Wiley & Sons Inc.; 2023. 368 pp.
  • Mansfeld F. Electrochemical impedance spectroscopy, analytical methods In: Marcus P. and Mansfelds Florian B., editors. Corrosion Science and Engineering. Boca Raton: CRC Press; 2005. p. 1–45.
  • Frankel GS. Electrochemical techniques in corrosion: status, limitations, and needs. J ASTM Int. 2008;5:101241. doi:10.1520/JAI101241
  • Tan YJ. Heterogeneous electrode processes and localised corrosion. Hoboken: John Wiley & Sons Inc.; 2013, 246p.
  • Mansfeld F. Don't be afraid of electrochemical techniques—but use them with care! 1988. Whitney award lecture, Corrosion. 1988;44(12):856–868. doi:10.5006/1.3584957
  • Tan YJ, Huang Y., Mansfeld F. Testing and analysis techniques in rare earth metal corrosion inhibitor research, in: Forsyth M., Hinton B. editors. Rare earth-based corrosion inhibitors, Cambridge: Woodhead Publishing Ltd (Elsevier); 2014, Ch. 2, p 38–83.
  • Tan YJ. Experimental methods designed for measuring corrosion in highly resistive and inhomogeneous media. Corros Sci. 2011;53:1145. doi:10.1016/j.corsci.2011.01.018
  • Tan YJ. Monitoring localised corrosion processes and estimating localised corrosion rates by means of a wire beam electrode. Corrosion-NACE. 1998;54:403–413. doi:10.5006/1.3284868
  • Tan Y. Sensing electrode inhomogeneity and electrochemical heterogeneity using an electrochemically integrated multielectrode array. J Electrochem Soc. 2009;156:C195–C208. doi:10.1149/1.3098477
  • Tan YJ. The effect of inhomogeneity in organic coatings on electrochemical measurements using a wire beam electrode, part 1. Prog Org Coat. 1991;19:89–94. doi:10.1016/0033-0655(91)80013-9
  • Tan YJ, Yu ST. The effect of inhomogeneity in organic coatings on electrochemical measurements using a wire beam electrode, part 2. Prog Org Coat. 1991;19:257–263. doi:10.1016/0033-0655(91)80028-H
  • Tan YJ. A new method for crevice corrosion studies and its use in the investigation of oil-stain. Corrosion. 1994;50:266–269. doi:10.5006/1.3294332
  • Wu CL, Zhou XJ, Tan YJ. A study on the electrochemical inhomogeneity of organic coatings. Prog Org Coat. 1995;25:379. doi:10.1016/0300-9440(95)00553-Q
  • Zhong QD. Potential variation of a temporarily protective oil coating before its degradation. Corros Sci. 2001;43:317–324. doi:10.1016/S0010-938X(00)00073-1
  • Bocher F, Presuel-Moreno F, Scully JR. Investigation of crevice corrosion of AISI 316 stainless steel compared to Ni-Cr-Mo alloys using coupled multielectrode arrays. J Electrochem Soc. 2008;155:C256–C268. doi:10.1149/1.2883741
  • Lunt TT, Brusamarello V, Scully JR, et al. Interactions among pitting corrosion sites investigated with electrode arrays. Electrochem Solid State Lett. 2000;3:271–274. doi:10.1149/1.1391122
  • Lunt TT, Scully JR, Brusamarello B, et al. Spatial interactions among localised corrosion sites. J Electrochem Soc. 2002;149:B163–B173. doi:10.1149/1.1466858
  • Budiansky ND, Hudson JL, Scully JR. Origins of persistent interaction among localised corrosion sites on stainless steel. J Electrochem Soc. 2004;151:B233–B243. doi:10.1149/1.1666168
  • Budiansky ND, Bocher F, Cong H, et al. Use of coupled multi-electrode arrays to advance the understanding of selected corrosion phenomena. Corrosion. 2007;63:537–554. doi:10.5006/1.3278405
  • Fushimi K, Naganuma A, Azumi K, et al. Current distribution during galvanic corrosion of carbon steel welded with type-309 stainless steel in NaCl solution. Corros Sci. 2008;50:903–911. doi:10.1016/j.corsci.2007.10.003
  • Legat A. Monitoring of steel corrosion in concrete by electrode arrays and electrical resistance probes. Electrochim Acta. 2007;52:7590–7598. doi:10.1016/j.electacta.2007.06.060
  • Zhang W, Hurley B, Buchheit RG. Characterisation of chromate conversion coating formation and breakdown using electrode arrays. J Electrochem Soc. 2002;149:B357–B365. doi:10.1149/1.1485774
  • Yang LT, Sridhar N, Brossia CS, et al. Evaluation of the coupled multielectrode array sensor as a real-time corrosion monitor. Corros Sci. 2005;47:1794–1809. doi:10.1016/j.corsci.2004.08.002
  • Battocchi D, He J, Bierwagen GP, et al. Emulation and study of the corrosion behaviour of Al alloy 2024-T3 using a wire beam electrode (WBE) in conjunction with scanning vibrating electrode technique (SVET). Corros Sci. 2005;47:1165–1176. doi:10.1016/j.corsci.2004.06.021
  • Kallip S, Bastos AC, Zheludkevich ML, et al. A multi-electrode cell for high-throughput SVET screening of corrosion inhibitors. Corros Sci. 2010;52:3146–3149. doi:10.1016/j.corsci.2010.05.018
  • García SJ, Muster TH, Özkanat Ö, et al. The influence of pH on corrosion inhibitor selection for 2024-T3 aluminium alloy assessed by high-throughput multielectrode and potentiodynamic testing. Electrochim Acta. 2010;55:2457–2465. doi:10.1016/j.electacta.2009.12.013
  • Garcia SJ, Muster TH, Hughes AE, et al. Validation of a fast scanning technique for corrosion inhibitor selection: influence of cross-contamination on AA2024-T3. Surf Interface Anal. 2010;42:205–210. doi:10.1002/sia.3150
  • Muster TH, Hughes AE, Furman SA, et al. A rapid screening multi-electrode method for the evaluation of corrosion inhibitors. Electrochim Acta. 2009;54:3402–3411. doi:10.1016/j.electacta.2008.12.051
  • Murer N, Buchheit RG. Stochastic modelling of pitting corrosion in aluminium alloys. Corros Sci. 2013;69:139–148. doi:10.1016/j.corsci.2012.11.034
  • Tan YJ, Mocerino M, Paterson T. Organic molecules showing the characteristics of localised corrosion aggravation and inhibition. Corros Sci. 2011;53:2041–2045. doi:10.1016/j.corsci.2011.01.042
  • Tan Y, Liu T. Characterising localised corrosion inhibition by means of parameters measured by an electrochemically integrated multielectrode array. Corros Eng Sci Technol. 2014;49(1):23–31. doi:10.1179/1743278213Y.0000000100
  • Tan Y, Liu T. Inhibiting localised corrosion of aluminium and aluminium alloy by rare earth metal compounds: behaviours and characteristics observed using an electrochemically integrated multi-electrode array. J Electrochem Soc. 2013;160(4):C147–C158. doi:10.1149/2.068304jes
  • Aung NN, Tan YJ. A new method of studying buried steel corrosion and its inhibition using the wire beam electrode. Corros Sci. 2004;46(12):3057–3067. doi:10.1016/j.corsci.2004.04.010
  • Tan YJ. Corrosion science: A retrospective and current status. In: Frankel GS, Isaaca HS, Scully JR, etal, editors. The electrochemical society 201st meeting, Philadelphia: The electrochemical society, INC.; 2002. p. 377–385.
  • Weng Y, Zhao H. Evaluation of pitting sensitivity of stainless steel in NaCI soultions by means of wire beam electrodes (WBE). J Chin Soc Corros Protect. 2003;23(6):328–329.
  • Weng Y. New sensors of wire beam electrodes (WBE) to detect pitting sensitivity of steels, NACE Meeting Papers 2004, Corrosion 2004; New Orlean, LA; United States; 28 March 2004.
  • Zou Y, Bai Q, Wang J, et al. Localised electrochemical corrosion characteristics of carbon steel in seawater. Adv Mat Res. 2014;842:104–109. doi:10.4028/www.scientific.net/AMR.842.104
  • Aung NN, Tan YJ. Monitoring pitting-crevice corrosion using the WBE-noise signatures method. Mater Corros. 2006;57(7):555–561. doi:10.1002/maco.200503946
  • Tan Y. Sensing localised corrosion by means of electrochemical noise detection and analysis. Sens Actuators, B. 2009;139(2):688–698. doi:10.1016/j.snb.2009.03.061
  • Tan YJ. An experimental comparison of three wire beam electrode based methods for determining corrosion rates and patterns. Corros Sci. 2005;47(7):1653–1665. doi:10.1016/j.corsci.2004.08.005
  • Tan YJ, Bailey S, Kinsella B, et al. Mapping corrosion kinetics using the wire beam electrode in conjunction with electrochemical noise resistance measurements. J Electrochem Soc. 2000;147(2):530–539. doi:10.1149/1.1393228
  • Zhang X, Wang W, Wang J. A novel device for the wire beam electrode method and its application in the ennoblement study. Corros Sci. 2009;51(6):1475–1479. doi:10.1016/j.corsci.2009.03.002
  • Wang W, Zhang X, Wang J. Heterogeneous electrochemical characteristics of biofilm/metal interface and local electrochemical techniques used for this purpose. Mater Corros. 2009;60(12):957–962. doi:10.1002/maco.200905227
  • Wang W, Zhang X, Wang J. Characterisation of electrochemical heterogenity of interface of an artificial biofilm/metal by means of a wire beam electrode. Corros Sci Prot Technol. 2009;21(3):242–244.
  • Wang W, Zhang X, Wang J. The influence of local glucose oxidase activity on the potential/current distribution on stainless steel: A study by the wire beam electrode method. Electrochim Acta. 2009;54(23):5598–5604. doi:10.1016/j.electacta.2009.04.064
  • Wang W, Lu Y, Zou Y, et al. The heterogeneous electrochemical characteristics of mild steel in the presence of local glucose oxidase-A study by the wire beam electrode method. Corros Sci. 2010;52(3):810–816. doi:10.1016/j.corsci.2009.10.043
  • Dong ZH, Shi W, Ruan HM, et al. Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique. Corros Sci. 2011;53(9):2978–2987. doi:10.1016/j.corsci.2011.05.041
  • Chen J, Wu J, Wang P, et al. Corrosion of 907 steel influenced by sulfate-reducing bacteria. J Mater Eng Perform. March 2019;28(3):1469–1479. doi:10.1007/s11665-019-03927-1
  • Chen S-Q, Wang P, Zhang D. The influence of sulphate-reducing bacteria on heterogeneous electrochemical corrosion behaviour of Q235 carbon steel in seawater. Mater Corros. 2016;67(4):340–351. doi:10.1002/maco.201508555
  • Wu J, Wang P, Gao J, et al. Comparison of water-line corrosion processes in natural and artificial seawater: The role of microbes. Electrochem Commun. 2017;80:9–15. doi:10.1016/j.elecom.2017.05.003
  • Chen S, Zhang D. Effects of metabolic activity of sulphate-reducing bacteria on heterogeneous corrosion behaviours of copper in seawater. Mater Corros. 2018;69(8):985–997. doi:10.1002/maco.201709945
  • Wang W, Jenkins PE, Ren Z. Heterogeneous corrosion behaviour of carbon steel in water contaminated biodiesel. Corros Sci. 2011;53(2):845–849. doi:10.1016/j.corsci.2010.10.020
  • Wang W, Jenkins PE, Ren Z. Electrochemical corrosion of carbon steel exposed to biodiesel/simulated seawater mixture. Corros Sci. 2012;57:215–219. doi:10.1016/j.corsci.2011.12.015
  • Tan Y-J, Bailey S, Kinsella B. Mapping non-uniform corrosion using the wire beam electrode method. I. multi-phase carbon dioxide corrosion. Corros Sci. 2001;43:1905–1918. doi:10.1016/S0010-938X(00)00190-6
  • Liu T, Tan TYJ, Lin BZM, et al. Novel corrosion experiments using the wire beam electrode. (IV) studying localised anodic dissolution of aluminium. Corros Sci. 2006;48(1):67–78. doi:10.1016/j.corsci.2004.11.022
  • Zhao J, Gu F, Wang D, et al. Effects of thioureido imidazoline on the passivation and pitting corrosion of N80 steel in CO2-saturated NaCl-NaNO2 solution. Int J Electrochem Sci. 2018;3(3):2676–2687. doi:10.20964/2018.03.27
  • Hien PV, Vu NSH, Thu VTH, et al. Study of yttrium 4-nitrocinnamate to promote surface interactions with AS1020 steel. Appl Surf Sci. 2017;412:464–474. doi:10.1016/j.apsusc.2017.03.219
  • Sato Y, Azumi K. Corrosion inhibition by zinc corrosion products on zinc-coated steel. ECS Trans. 2012;50(47):27–33. doi:10.1149/05047.0027ecst
  • Pang L, Wang Z, Zheng Y, et al. On the localised corrosion of carbon steel induced by the in-situ local damage of porous corrosion products. J Mater Sci Technol. 2020;54:95–104. doi:10.1016/j.jmst.2020.03.041
  • Tan YJ. A novel crevice corrosion experiment using a wire beam electrode. J Corros Sci Eng. (https://www.jcse.org/) 1999;1:11.
  • Zhong QD. Study on crevice corrosion of copper using wire beam electrode. J Chin Soc Corros Protect. 1999;19(3):XVIII–XV192.
  • Li GX, Wang D, Zhu RL, et al. Effect of sodium nitrite on crevice corrosion of mild steel using wire beam electrode, Hunan Daxue Xuebao. J Hunan Univ Nat Sci. 2005;32(6):91–93.
  • Ren C, Chen J, Pu L, et al. Electrochemical investigation on crevice corrosion of P110 steel by using one-dimensional array electrode. Int J Electrochem Sci. 2015;10(10):8210–8223. doi:10.1016/S1452-3981(23)11088-1
  • Cheng Q, Tao B, Liu S, et al. Corrosion behaviour of Q235B carbon steel in sediment water from crude oil. J Chin Soc Corros Prot. 2017;37(2):126–134.
  • Aung NN, Wai WK, Tan YJ. A novel electrochemical method for monitoring corrosion under insulation. Anti-Corros Methods Mater. 2006;53(3):175–179. doi:10.1108/00035590610665590
  • Tan Y, Fwu Y, Bhardwaj K. Electrochemical evaluation of under-deposit corrosion and its inhibition using the wire beam electrode method. Corros Sci. 2011;53(4):1254–1261. doi:10.1016/j.corsci.2010.12.015
  • He L, Xu Y, Wang X, et al. Understanding the propagation of nonuniform corrosion on a steel surface covered by marine sand. Corrosion. 2019;75(12):1487–1501. doi:10.5006/3278
  • Xu Y, Huang Y, He L, et al. Experimental study on under-deposit corrosion and its inhibition using electrochemical methods and electronic coupon technique. Anti-Corrosion Methods and Materials. 2017;64(2):148–161.
  • Wu YL, Zhang DP, Cai GY, et al. Effects of temperature on polarity reversal of under deposit corrosion of mild steel in oilfield produced water. Corros Eng Sci Techn. 2020;55:1–13. DOI: 10.1080/1478422X.2020.1785650.
  • Zhang GA, Yu N, Yang LY, et al. Galvanic corrosion behaviour of deposit-covered and uncovered carbon steel. Corros Sci. 2014;86:202–212. doi:10.1016/j.corsci.2014.05.011
  • Huo Y, Tan MY, Shu L. Effects of high salt concentration and residue on copper and aluminium corrosion. Chem Res Chin Univ. 2013;29(3):538–544. doi:10.1007/s40242-013-2305-6
  • Kosec T, Hren M, Legat A. Monitoring copper corrosion in bentonite by means of a coupled multi-electrode array. Corros Eng Sci Techn. 2017;52:70–77. doi:10.1080/1478422X.2017.1312200
  • Chen JJ, Ju H, Sun C, et al. Application of electrochemical testing technology for corrosion under-deposits. J Chinese Soc Corros Protec. 2017;37(3):207–215.
  • Wang K, Varela FB, Tan MY. Visualizing dynamic and localised corrosion processes on cathodically protected steel exposed to soil with different moisture contents. Corrosion. 2019;75(4):398–407. doi:10.5006/3080
  • Luo F-W, Weng YJ. Comparison of corrosion behaviour of X70 steel and 16Mn steel in soils. II:pitting corrosion and crevice attack. Corros Sci Prot Technol. 2005;17(3):151–153.
  • Deng P, Liu Q, Li Z, et al. Corrosion behaviour of X70 pipeline steel in the tropical juncture area of seawater-sea mud. J. Chinese Soc Corros Protect. 2018;38(5):1005–4537. (2018)05-0415-09, pp. 415-423.
  • Hu J, Li X, Deng P, et al. Evaluation of carbon steel corrosion in vicinity of interface sea-water/sea-mud by techniques WBE and LP. Corros Sci Prot Technol. 2015;27(6):551–558.
  • Hu J, Deng P, Zhang J, et al. Macro non-uniform corrosion of Q235 steel in tropical and coastal red soils. Corros Sci Prot Technol. 2017;29(3):1002–6495. 03-0233-08, pp. 233-240.
  • Shi H-S, Deng K. Simulating research on the corrosion of steel bar in concrete by wire-beam electrode Jianzhu Cailiao Xuebao. J Build Mater. 2005;8(6):682–686.
  • Hu J, Li G, Deng K, et al. Study on non-uniform corrosion of rebar embedded in concrete by wire - beam electrode. J. Chinese Soc Corros Protec. 2005;25(2):88–92.
  • Li LQ, Dong SG, Wang W, et al. Study on interaction between macrocell and microcell in the early corrosion process of reinforcing steel in concrete. Sci China Techn Sci. 2010;53(5):1285–1289. doi:10.1007/s11431-010-0152-y
  • Česen A, Kosec T, Legat A. Characterisation of steel corrosion in mortar by various electrochemical and physical techniques. Corros Sci. 2013;75:47–57. doi:10.1016/j.corsci.2013.05.015
  • Shi W, Dong ZH, Kong DJ, et al. Application of wire beam electrode technique to investigate initiation and propagation of rebar corrosion. Cem Concr Res. 2013;48:25–33. doi:10.1016/j.cemconres.2013.02.009
  • Hu J, Deng P, Li X, et al. The vertical Non-uniform corrosion of reinforced concrete exposed to the marine environments. Constr Build Mater. 2018;183:180–188. doi:10.1016/j.conbuildmat.2018.06.015
  • Yu H, Caseres L. An embedded multi-parameter corrosion sensor for reinforced concrete structures. Mater Corros. 2012;63(11):1011–1016. doi:10.1002/maco.201106113
  • Liubin S, Daowu Y, Sanjun P, et al. Electrochemical study of inhibitors to improve the anti-corrosion performance of reinforced bar in the concrete. Anti-Corros Meth Mater. 2011;58(1):22–25. doi:10.1108/00035591111097666
  • Shi W, Wang T-Z, Dong Z-H, et al. Application of wire beam electrode technique to investigate the migrating behaviour of corrosion inhibitors in mortar. Constr Build Mater. 2017;34:167–175. doi:10.1016/j.conbuildmat.2016.12.036
  • Wu J, Yu H, Shi X. Effectiveness of products in managing metallic corrosion induced by cyclic deicer exposure: laboratory study using multielectrode array sensors, electrochemical impedance, and laser profilometer. J Mater Civ Eng. 2016;28(5):04015186. doi:10.1061/(ASCE)MT.1943-5533.0001449
  • Yang D, Song L, Wang C, et al. Electrochemistry study on epoxy resin to anti-corrosion performance of reinforced bar in the concrete. TMS Annual Meeting. 2009;3:735–740.
  • Tan YJ. Wire beam electrode: A new tool for studying localised corrosion and other heterogeneous electrochemical processes. Corros Sci. 1999;41:229. doi:10.1016/S0010-938X(98)00120-6
  • Aung NN, Tan Y-J, Liu T. Novel corrosion experiments using the wire beam electrode: (II) monitoring the effects of ions transportation on electrochemical corrosion processes. Corros Sci. 2006;48(1):39–52. doi:10.1016/j.corsci.2004.11.020
  • Zhong Q. Study of corrosion behaviour of mild steel and copper in thin film salt solution using the wire beam electrode. Corros Sci. 2002;44(5):909–916. doi:10.1016/S0010-938X(01)00098-1
  • Wang Y, Wang W, Liu Y, et al. Study of localised corrosion of 304 stainless steel under chloride solution droplets using the wire beam electrode. Corros Sci. 2011;53(9):2963–2968. doi:10.1016/j.corsci.2011.05.051
  • Wang YH, Liu YY, Wang W, et al. Influences of the three-phase boundary on the electrochemical corrosion characteristics of carbon steel under droplets. Mater Corros. 2013;64(4):309–313. doi:10.1002/maco.201106423
  • Zhang P, Wang Y, Peng X, et al. Study of corrosion behaviour of copper beneath a droplet by means of wire beam electrode technology. J Chinese Soc Corros Protect. 2014;34(5):459–464.
  • Zhang X, Gao Z, Hu W, et al. Correlation between corrosion behaviour and image information of Q235 steel beneath thin electrolyte film. J Chinese Soc Corros Protect. 2017;37(5):1005–4537; 444–450.
  • Liu Z, Wang W, Wang J, et al. Study of corrosion behaviour of carbon steel under seawater film using the wire beam electrode method. Corros Sci. 2014;80:523–527. doi:10.1016/j.corsci.2013.11.012
  • Azumi K, Naganuma A, Sato Y. Coupling current mapping of corroding iron in a wet and dry cyclic corrosion test. J Solid State Electrochem. 2015;19(12):3543–3550. doi:10.1007/s10008-015-2779-x
  • Feng L, Wang Y, Zhong L, et al. Influence of short-term storage on corrosion behaviour of copper. J Chinese Soc Corros Protect. 2016;36(4):375–380.
  • Zhao B, Yu Y, Guo J, et al. Evaluation of dew point corrosion in acid atmosphere by wire beam electrode, IOP conference series. Mater Sci Eng. 2020;838(1):27–30.
  • Guan X, Zhang D, Wang J, et al. Numerical and electrochemical analyses on carbon dioxide corrosion of X80 pipeline steel under different water film thicknesses in NACE solution. J Nat Gas Sci Eng. 2017;37:199–216. doi:10.1016/j.jngse.2016.11.047
  • Mills DJ, Mayne JEO. in H. Leidheiser (ed.), Corrosion Control by Organic Coating, NACE, Houston, TX, 1981, p. 51.
  • Wu C, Zhong Q, Jin J. Study on electrochemical inhomogeneity on oil-painted metal. Corros Sci Prot Technol. 1996;8(3):X13–X14.
  • Huang G-F, Wu C-L, Jin J-C. Factors influencing protective behaviour of rust-preventing oil and the corrosion under oil film. J. Chinese Soc Corros Protec. 1999;19(3):XVI–184.
  • Huang G, Wu C, Jin J, et al. Study on localised corrosion of metal under oil film. Corros Sci Prot Technol. 2000;12(1):30–31.
  • Huang G-F, Li G-X, Huang W-Q, et al. Progress in the study on organic coatings on metals by using wire beam electrode. Corros Protec. 2004;25(8):339–341.
  • Jin J-C, Huang G-F, Chen D-P, et al. Electrochemical direct measurement method of rust preventing ability test for metal/rust preventive oils with wire beam electrode. Hunan Daxue Xuebao. J. Hunan Univers Natural Sci. 2010;37(8):58–61.
  • Zhong Q. A novel electrochemical testing method and its use in the investigation of the self-repairing ability of temporarily protective oil coating. Corros Sci. 2002;44(6):1247–1256. doi:10.1016/S0010-938X(01)00108-1
  • Qingdong Z, Zhao Z. Study of anti-contamination performance of temporarily protective oil coatings using wire beam electrode. Corros Sci. 2002;44(12):2777–2787. doi:10.1016/S0010-938X(02)00066-5
  • Zhong Q, Rohwerder M, Zhang Z. Study of lubricants and their effect on the anti-corrosion performance as temporarily protective oil coatings. Surf Coat Technol. 2004;185(2-3):234–239. doi:10.1016/j.surfcoat.2003.12.008
  • Zhong Q, Xu N, Zhou G, et al. Study of electronic-ionic conducting transformation of temporarily protective oil coating in salt solution. Mater Corros. 2003;54(2):97–105. doi:10.1002/maco.200390028
  • Huang F-C, Zhong L-J, Tong P, et al. Effect of addition amount of antirust agent on inhomogeneity of electrochemical characteristics of a rust preventive oil film. Corros Sci Prot Technol. 2011;23(1):45–48.
  • Liu J, Wang B, Zhu L, et al. Correlation between EIS and potential distribution for carbon steel under epoxy coating. Appl Mechan Mater. 2013;313-314:249–253. doi:10.4028/www.scientific.net/AMM.313-314.249
  • Liu J, Zhang L, Mu X, et al. Studies of electrochemical corrosion of low alloy steel under epoxy coating exposed to natural seawater using the WBE and EIS techniques. Prog Org Coat. 2017;111:315–321. doi:10.1016/j.porgcoat.2017.06.012
  • Liu J, Lu Z, Zhang L, et al. Studies of corrosion behaviours of a carbon steel/copper-nickel alloy couple under epoxy coating with artificial defect in 3.5 wt.% NaCl solution using the WBE and EIS techniques. Prog Org Coat. 2020;148:105909. doi:10.1016/j.porgcoat.2020.105909
  • Jamali SS, Mills DJ. Studying inhomogeneity of organic coatings using wire beam multielectrode and physicomechanical testing. Corros Eng Sci Techn. 2013;48(7):489–495. doi:10.1179/1743278213Y.0000000114
  • Chu X, Qing M, Wang Y. Effect of chloride ion on metal corrosion behaviour under pinhole defect of coating studied by WBE technology. Corros Protec. 2019;40(1):1005–748X. (2019)01-0023-05, pp. 23-27].
  • Tang Y-R, Wang Q-Y, Pei R, et al. A study on the local corrosion behaviour and mechanism of electroless Ni-P coatings under flow by using a wire beam electrode. RSC Adv. 2019;9(59):34214–34226. doi:10.1039/C9RA03814K
  • Li Y, Chen C, Zhong Q, et al. Using WBE conjunction with electrochemical noise to evaluate the corrosion regularity of enmael coating modified on mild steel immersed in corrosive solution. Surf Rev Lett. 2019;26(8):1950049. doi:10.1142/S0218625X19500495
  • Tan Y. An overview of techniques for characterising inhomogeneities in organic surface films and underfilm localised corrosion. Prog Org Coat. 2013;76(5):791–803. doi:10.1016/j.porgcoat.2013.02.001
  • Mahdavi F, Tan MYJ, Forsyth M. Communication—an approach to measuring local electrochemical impedance for monitoring cathodic disbondment of coatings. J. Electrochem. Soc. 2016;163:C228–C231. doi:10.1149/2.1101605jes
  • Mahdavi F, Forsyth M, Tan MYJ. Understanding the effects of applied cathodic protection potential and environmental conditions on the rate of cathodic disbondment of coatings by means of local electrochemical measurements on a multi-electrode array. Prog Org Coat. Feb 2017;103:83–92. doi:10.1016/j.porgcoat.2016.10.020
  • Mahdavi F, Forsyth M, Tan MYJ. Techniques for testing and monitoring the cathodic disbondment of organic coatings: An overview of major obstacles and innovations. Prog Org Coat. 2017;105:163–175. doi:10.1016/j.porgcoat.2016.11.034
  • Thu QL, Bonnet G, Compere C, et al. Modified wire beam electrode: A useful tool to evaluate compatibility between organic coatings and cathodic protection. Prog Org Coat. 2005;52:118–125. doi:10.1016/j.porgcoat.2004.10.002
  • Wang H, Wang J, Wang W, et al. The study of the varying characteristics of cathodic regions for defective coating in 3.5% sodium chloride solution by EIS and WBE. J Ocean Univ China. 2015;14(2):269–276. doi:10.1007/s11802-015-2542-z
  • Chen Y, Zhang W, Ding K, et al. Debonding mechanism of organic coating with man-made defect in the area nearbywater-line by wbe technique. J. Chinese Soc Corros Protec. 2016;36(1):67–72.
  • Chen Y, Zhang W, Wang Q, et al. Debonding mechanism of organic coating with artificial defect in areas nearby water-line in 3.5% NaCl solution by WBE technique-II. J.Chinese Soc Corros Protect. 2017;37(4):322–328.
  • Gu C, Hu J, Zhong X. The coating delamination mitigation of epoxy coatings by inhibiting the hydrogen evolution reaction. Prog Org Coat. 2020;147, Article number 105774.
  • Varela F, Tan MYJ, Forsyth M. An electrochemical method for measuring localised corrosion under cathodic protection. ECS Electrochem Lett. 2015;4:C1–C4. doi:10.1149/2.0091501eel
  • Varela F, Tan MYJ, Forsyth M. Electrochemical method for studying localised corrosion beneath disbonded coatings under cathodic protection. J Electrochem Soc. 2015;162:C515–C527. doi:10.1149/2.0301510jes
  • Varela F F, Tan MYJ, Forsyth M. Understanding the effectiveness of cathodic protection under disbonded coatings. Electrochim Acta. 2015;186:377–390. doi:10.1016/j.electacta.2015.10.171
  • Wang K, Varela FB, Tan MY. Probing dynamic and localised corrosion processes on buried steel under coating disbondments of various geometries. Corros Sci. 2019;150:151–160. doi:10.1016/j.corsci.2019.01.034.
  • Tan, MYJ, Varela, F., Wang, K., Field experiences of using electrochemically integrated electrode arrays as corrosion monitoring probes for visualizing buried pipeline corrosion, NACE – International corrosion conference series; 2019, March, 2019, Article number 12955.
  • Huo Y, Tan M, Forsyth M. Visualising dynamic passivation and localised corrosion processes occurring on buried steel surfaces under the effect of anodic transients. Electrochem. Commun. 2016;66:21–24. doi:10.1016/j.elecom.2016.02.015
  • Huo Y, Tan MY. Localised corrosion of cathodically protected pipeline steel under the effects of cyclic potential transients. Corros Eng Sci Techn. 2018;53:348–354. doi:10.1080/1478422X.2018.1471250
  • Wang K, Varela FB, Tan MY. The effect of electrode surface area on corrosion initiation monitoring of X65 steel in soil. Corros Sci. 2019;152:218–225. doi:10.1016/j.corsci.2019.03.019
  • Xu Y, Tan MY. Visualizing the dynamic processes of flow accelerated corrosion and erosion corrosion using an electrochemically integrated electrode array. Corros Sci. 2018;139:438–443. doi:10.1016/j.corsci.2018.05.032
  • Xu Y, Tan MY. Probing the initiation and propagation processes of flow accelerated corrosion and erosion corrosion under simulated turbulent flow conditions. Corros Sci. 2019;151:163–174. doi:10.1016/j.corsci.2019.01.028
  • Xu Y, Liu L, Zhou Q, et al. An overview of major experimental methods and apparatus for measuring and investigating erosion-corrosion of ferrous-based steels. Metals (Basel). 2020;10:180. doi:10.3390/met10020180
  • Xu Y, Liu L, Zhou Q, et al. Understanding the influences of pre-corrosion on the erosion-corrosion performance of pipeline steel. Wear. 2020;442-443:203151. doi:10.1016/j.wear.2019.203151
  • Zeng L, Zhang GA, Guo XP. Erosion-corrosion at different locations of X65 carbon steel elbow. Corros Sci. 2014;85:318–330. doi:10.1016/j.corsci.2014.04.045
  • Zeng L, Shuang S, Guo XP, et al. Erosion-corrosion of stainless steel at different locations of a 90° elbow. Corros Sci. 2016;111:72–83. doi:10.1016/j.corsci.2016.05.004
  • Zhong X, Shang T, Zhang C, et al. In situ study of flow accelerated corrosion and its mitigation at different locations of a gradual contraction of N80 steel. J Alloys Compd. 2020;824:153947. doi:10.1016/j.jallcom.2020.153947
  • Li Z, Liu J, Zhang L, et al. Electrochemical inhomogeneities of steel in steel/copper alloy couple during galvanic corrosion in static and flowing seawater. Mater Corros. 2019;70:726–737. doi:10.1002/maco.201810487
  • Deng P, Li Z, Li X, et al. Vertical galvanic corrosion of pipeline steel in simulated marine thermocline. Ocean Eng. 2020;217:107584. doi:10.1016/j.oceaneng.2020.107584
  • Tan Y-J, Bailey S, Kinsella B. Mapping non-uniform corrosion using the wire beam electrode method. III. water-line corrosion. Corros Sci. 2001;43:1931–1937. doi:10.1016/S0010-938X(00)00192-X
  • Chen Y, Wang W, Wang J, et al. Evaluation of water-line area corrosion for Q235 steel by WBE technique. J Chinese Soc Corrosi Protec. 2014;34:451–458.
  • Ding J, Zhang W, Wang J, et al. Evaluation of water-line zone corrosion of an electrode with coating in NaCl solution by WBE technique-I. J Chinese Soc Corros Protec. 2016;36(5):463–470.
  • Chen Z, Zhang W, Zhan Y, et al. Coating deterioration and underlying metal corrosion processes in water-line area: role of DACs. Coatings. 2020;10:684. doi:10.3390/coatings10070684
  • Parvizi R, Hughes AE, Tan MYJ. New Approach to Probing Localised Corrosion Processes Over Wide Length and Time Scales Using Integrated Multi-Scale Electrode Arrays, Corrosion Science, Available online 7 January (2021), 109238.
  • Bu H, Li X, Qi J, et al. Microelectrode array technology used for investigating the corrosion of alloys. Cailiao Daobao/Mater Rep. 2019;33(12):3963–3970.
  • Ju H, Duan J, Yang Y, et al. Mapping the galvanic corrosion of three coupled metal alloys using coupled multielectrode array: influence of chloride ion concentration. Materials (Basel). 2018;11(4):634. doi:10.3390/ma11040634
  • Zhang D-L, Wang W, Li Y. An electrode array study of electrochemical inhomogeneity of zinc in zinc/steel couple during galvanic corrosion. Corros Sci. 2010;52(4):1277–1284. doi:10.1016/j.corsci.2009.12.030
  • Chen C, Xu Y-X, Zhong Q-D, et al. Correlation of temperature with galvanic corrosion behaviour of copper alloys based on wire beam electrode. Corros Eng Sci Techn. 2018;53(5):331–339. doi:10.1080/1478422X.2018.1469328
  • Zhang D-L, Wang W, Jin Y-H, et al. Wire beam electrode technique for investigating galvanic corrosion behaviour of galvanized steel-spot defect. Zhongguo Youse Jinshu Xuebao. Chinese J Nonferr Metal. 2011;21(9):2168–2174.
  • Liu L, Xu Y, Wang X, et al. Preferential corrosion behaviour of carbon steel weld in simulation pore solution and the inhibition performance of nitrite. Cailiao Daobao. Mater Rev. 2017;31(9):119–124. and 130.
  • Li Y, Li Y, Yang R, et al. Reconstruction of X80 pipeline steel welded joints and corrosion behaviour in NACE solution, zhongguo shiyou daxue xuebao (ziran kexue Ban). J. China Univ Petrol (Edit Natur Sci). 2018;42(6):153–160.
  • Li Y, Li Q, Tang X, et al. Reconstruction and characterisation of galvanic corrosion behaviour of X80 pipeline SteelWelded joints. Jinshu Xuebao/Acta Metallurgica Sinica. 2019;55(6):801–810.
  • Chen Y, Wang Y, zhou L, et al. Macro-galvanic effect and its influence on corrosion behaviours of friction stir welding joint of 7050-T76 Al alloy. Corros Sci. 2020;164, document number 108360.
  • Hurley MF, Cunningham A, Lysne D, et al. A condition monitor for atmospheric induced stress corrosion cracking. NACE - International corrosion conference series, corrosion; 2018.
  • Tan Y-J, Aung NN, Liu T. Novel corrosion experiments using the wire beam electrode. (I) studying electrochemical noise signatures from localised corrosion processes. Corros Sci. 2006;48:23–38. doi:10.1016/j.corsci.2004.11.019
  • Hladky K, Dawson JL. The measurement of localised corrosion using electrochemical noise. Corros Sci. 1981;21:317–322. doi:10.1016/0010-938X(81)90006-8
  • Tan Y-J, Liu T, Aung NN. Novel corrosion experiments using the wire beam electrode: (III) measuring electrochemical corrosion parameters from both the metallic and electrolytic phases. Corros Sci. 2006;48:53–66. doi:10.1016/j.corsci.2004.11.021
  • Manzin A, Boveri C, Capra PP, et al. Experimental and numerical characterisation of an electrode-matrix cell for electrochemical measurements. Sens Actuators, B. 2009;138:326–335. doi:10.1016/j.snb.2009.02.028
  • Laleh M, Pathirana M, Tan MY. Site-specific local polarisation curve measurements for probing localised corrosion and inhibition. Corros Sci. 2023;214:111019–111019. Article number 111019 15 Apr 2023. doi:10.1016/j.corsci.2023.111019.
  • Daryadel S, Behroozfar A, Morsali SR, et al. Additive manufacturing of metals at micro/nanoscale by localised pulsed electrodeposition: nanotwinned copper nanowires, ASME 2018. 13th international manufacturing science and engineering conference, MSEC; 2018.
  • Hoshino T, Kawamori M, Suzuki T, et al. Three-dimensional and multimaterial microfabrication using focused-ion-beam chemical-vapor deposition and its application to processing nerve electrodes. J. Vacuum Sci Techn B: Microelectron Nanom Struct. 2004;22:3158–3162.
  • Chiang KT, Yang L. Development of crevice-free electrodes for multielectrode array sensors for applications at high temperatures. Corrosion, NACE. 2008;64:805–812. doi:10.5006/1.3278448
  • Chiang KT, Yang L. High-temperature electrochemical sensor for online corrosion monitoring. Corrosion. 2010;66:0950021–0950028. doi:10.5006/1.3490307
  • Pathirana M, Laleh M, Somers A, et al. The critical effect of rust layers on localised corrosion of steel exposed to waterline environments. Corros Sci. 2023: 2023174. doi:10.1016/j.corsci.2023.111333.
  • Tan MYJ, Bob Varela F, Huo Y. An overview of recent progresses in probing and understanding corrosion under disbonded coatings. Corros Eng Sci Techn. 2023;58:1–10. doi:10.1080/1478422X.2022.2128376
  • Laleh M, Xu Y, Tan MYJ. A three-dimensional electrode array probe designed for visualising complex and dynamically changing internal pipeline corrosion. Corros Sci. 2023;211:7 Article number ARTN 110924 01. doi:10.1016/j.corsci.2022.110924
  • Wang M, Tan MY, Zhu Y, et al. Probing top-of-the-line corrosion using coupled multi-electrode array in conjunction with local electrochemical measurement. npj Mater Degradat. 2023;7(1).
  • Hampel M, Schenderlein M, Schary C, et al. Efficient detection of localized corrosion processes on stainless steel by means of scanning electrochemical microscopy (SECM) using a multi-electrode approach. Electrochem Commun. 2019;101:52–55. doi:10.1016/j.elecom.2019.02.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.